[10] D. Mohan et al., “Artificial
Intelligence and IoT in Elderly Fall
Prevention: A Review,” IEEE Sens J, vol.
24, no. 4, pp. 4181–4198, Feb. 2024, doi:
10.1109/JSEN.2023.3344605.
[11] B. Basumatary, M. Yuvaraj, and
M. K. Verma, “Scientific communication
of east Asian countries on internet of
things (IoT): A performance evaluation
based on scientometric tools,” Information
Development, p. 026666692211511, Jan.
2023, doi: 10.1177/02666669221151160.
[12] Y. Jia, M. R. Hosseini, B. Zhang,
I. Martek, B. Nikmehr, and J. Wang, “A
scientometric-content analysis of
integration of BIM and IoT,” IOP Conf
Ser Earth Environ Sci, vol. 1101, no. 7, p.
072002, Nov. 2022, doi: 10.1088/1755-
1315/1101/7/072002.
[13] H. Meziane and N. Ouerdi, “A
survey on performance evaluation of
artificial intelligence algorithms for
improving IoT security systems,” Sci Rep,
vol. 13, no. 1, p. 21255, Dec. 2023, doi:
10.1038/s41598-023-46640-9.
[14] Dr. A. P. Ms. Pooja B. Gandhi,
“The Power of Ai In Addressing The
Challenges Faced By Indian Farmers In
The Agriculture Sector: An Analysis,”
Tuijin Jishu/Journal of Propulsion
Technology, vol. 44, no. 4, pp. 4753–4777,
Nov. 2023, doi:
10.52783/tjjpt.v44.i4.1788.
[15] S. Wang et al., “Adaptive
Federated Learning in Resource
Constrained Edge Computing Systems.”
vol. 37, no. 6, pp. 1205-1221, June 2019,
doi: 10.1109/JSAC.2019.2904348.
[16] Z. Zhou, X. Chen, E. Li, L. Zeng,
K. Luo, and J. Zhang, “Edge Intelligence:
Paving the Last Mile of Artificial
Intelligence With Edge Computing,”
Proceedings of the IEEE, vol. 107, no. 8,
pp. 1738–1762, Aug. 2019, doi:
10.1109/JPROC.2019.2918951.
[17] Z. Zhou, D. Niyato, Z. Xiong, X.
Gong, W. Saad, and X. Fu, “Guest
Editorial the Nexus Between Edge
Computing and AI for 6G Networks,”
IEEE Trans Netw Sci Eng, vol. 10, no. 3,
pp. 1186–1189, May 2023, doi:
10.1109/TNSE.2023.3249040.
[18] H. Zhao, Y. Zhu, K. Lu, Q. Li, Z.
Li, and S. Dong, “Edge computing and
hybrid control technology for microgrids
based on activity on edge networks,”
Energy Conversion and Economics, vol.
4, no. 6, pp. 387–400, Dec. 2023, doi:
10.1049/enc2.12103.
[19] Md. M. H. Shuvo, S. K. Islam, J.
Cheng, and B. I. Morshed, “Efficient
Acceleration of Deep Learning Inference
on Resource-Constrained Edge Devices:
A Review,” Proceedings of the IEEE, vol.
111, no. 1, pp. 42–91, Jan. 2023, doi:
10.1109/JPROC.2022.3226481.
[20] F. Tao, Q. Qi, A. Liu, and A.
Kusiak, “Data-driven smart
manufacturing,” J Manuf Syst, vol. 48, pp.
157–169, Jul. 2018, doi:
10.1016/j.jmsy.2018.01.006.
[21] S. Vengusamy and H. A. L.
Rajendran, “Artificial Intelligence (AI) in
Battle Against COVID-19,” in The Role of
AI, IoT and Blockchain in Mitigating the
Impact of COVID-19, BENTHAM
SCIENCE PUBLISHERS, 2023, pp. 1–
25. doi:
10.2174/9789815080650123010003.
[22]A. Iglesias, A. Gálvez, and P. Suárez,
“The Role of Artificial Intelligence and
Machine Learning for the Fight Against
COVID-19,” 2023, pp. 111–128. doi:
10.1007/978-3-031-33183-1_7.
[23]M. A. Muhammad and F. Al-Turjman,
“Application of IoT, AI, and 5G in the
Fight Against the COVID-19 Pandemic,”
2021, pp. 213–234. doi: 10.1007/978-3-
030-60188-1_10.