[3] C. Pestana Barros, "Efficiency analysis of
hydroelectric generating plants: A case study for
Portugal", Energy Econ., vol. 30, no. 1, pp. 59-75,
Jan. 2008. https://doi.org/10.1016/j.eneco.2006.10.
008
[4] Q. Zhang, C. Xig, F. Shen, Y. Gong, Y. Zi, H.
Gou, Z. Li, Y. Peng, Q. Zhang, and Z. L. Wang,
"Human body IoT systems based on the
triboelectrification effect: energy harvesting, sensing,
interfacing and communication", Energy Environ.
Sci., vol. 15, no. 9, pp. 3688-3721, Jul. 2022.
https://doi.org/10.1039/D2EE01590K
[5] T. Tat, A. Libanori, C. Au, A. Yau, and J. Chen,
"Advances in triboelectric nanogenerators for
biomedical sensing," Biosens Bioelectron, vol. 171,
Art. no. 112714, Jan. 2021. https://doi.org/10.1016
/j.bios.2020.112714
[6] F. Zamanpour, L. Shooshtari, M. Gholami, R.
Mohammadpour, P. Sasanpour, and N. Taghavinia,
"Transparent and flexible touch on/off switch based
on BaTiO3/silicone polymer triboelectric
nanogenerator", Nano Energy, vol. 103, pt. A, Art.
no. 107796, Dec. 2022. https://doi.org/10.1016/j.na
noen.2022.107796
[7]. X. Cheng, X. Xue, Y. Ma, M. Han, W. Zhang, Z.
Xu, H. Zhang, and H. Zhang, "Implantable and self-
powered blood pressure monitoring based on a
piezoelectric thinfilm: Simulated, in vitro and in vivo
studies", Nano Energy, vol. 22, pp. 453-460, April
2016. https://doi.org/10.1016/j.nanoen.2016.02.037
[8]. B. H. Moghadam, M. Hasanzadeh, and A.
Simchi, "Self-Powered Wearable Piezoelectric
Sensors Based on Polymer Nanofiber-Metal-Organic
Framework Nanoparticle Composites for Arterial
Pulse Monitoring", ACS Appl Nano Mater, vol. 3, no.
9, pp. 8742-8752, Aug. 2020. https://doi.org
/10.1021/acsanm.0c01551
[9]. Y. Wang, W. Zhu, Y. Deng, B. Fu, P. Zhu, Y. Yu,
Jiao Li, and J. Guo, "Self-powered wearable pressure
sensing system for continuous healthcare monitoring
enabled by flexible thin-film thermoelectric
generator", Nano Energy, vol. 73, Art. no. 104773,
July 2020. https://doi.org/10.1016/j.nanoen.2020.10
4773
[10]. K. Meng, S. Zhao, Y. Zhou, Y. Wu, S. Zhang,
Q. He, X. Wang, Z. Zhou, W. Fan, X. Tan, J. Yang,
and J. Chen, "A Wireless Textile-Based Sensor
System for Self-Powered Personalized Health Care",
Matter, vol. 2, pp. 896-907, April 2020.
https://doi.org/10.1016/j.matt.2019.12.025
[11] P. Jha, P. Patra, J. Naik, A. Dutta, A. Acharya, P.
Rajalakshmi, and S. G. Singh, "A 2μW biomedical
frontend with ΣΔ ADC for self-powered U-healthcare
devices in 0.18μm CMOS technology", en 2015 IEEE
13th International New Circuits and Systems
Conference (NEWCAS), Grenoble, Francia, June
2015.https://doi.org/10.1109/NEWCAS.2015.71820
54
[12] M. L. S. Mi, S. H. M. Ali, and M. S. Islam, "A
Novel Architecture of Maximum Power Point
Tracking for Ultra-Low-Power Based Hybrid Energy
Harvester in Ubiquitous Devices: A Review", Am. J.
Appl. Sci., vol. 10, no. 10, pp. 1240-1251, Sep. 2013.
https://doi.org/10.3844/ajassp.2013.1240.1251
[13]. R. Kumar, F. J. Montero, R. Lamba, M.
Vashishtha, and S. Upadhyaya, "Thermal
management of photovoltaic-thermoelectric
generator hybrid system using radiative cooling and
heat pipe", Appl. Therm. Eng., vol. 227, Art. no.
120420, June 2023. https://doi.org/10.1016/j.applt
hermaleng.2023.120420
[14]. Y. Zhu, D. W. Newbrook, C. H. de Groot, and
R. Huang, "Comprehensive analysis of radiative
cooling enabled thermoelectric energy harvesting", J.
Phys. Photonics, vol. 5, no. 2, Art. no. 025002, April
2023. https://doi.org/10.1088/2515-7647/accac1
[15]. F. J. Montero, R. Lamba, A. Ortega, W. Jahn,
W. H. Chen, and A. M. Guzmán, "A bidirectional
solar thermoelectric generator combining heat storage
for daytime and nighttime power generation", Appl.
Therm. Eng, vol. 224, Art. no. 119997, April 2023.
https://doi.org/10.1016/j.applthermaleng.2023.11999
7