Revista de Ciencias Tecnológicas (RECIT). Volumen 7 (4): e304.
20 ISSN: 2594-1925
[17] E. C. Oknokwo, M. Al-Breiki, Y. Bicer, T. Al-
Ansari. 2021. “Sustainable hydrogen roadmap: A
holistic review and decision-making methodology for
production, utilization and exportation using Qatar as
a case study” Int. J. Hydrog, 46(72), pp. 35525-
35549. DOI:
https://doi.org/10.1016/j.ijhydene.2021.08.111
[18] F. Du, W. Sun, H. Luo, and C. M. Li. 2022.
“Recent progress in electrochemical synthesis of
carbon-free hydrogen carrier ammonia and ammonia
fuel cells: A review” Materials Reports: Energy, 2(4),
pp. 100163. DOI:
https://10.1016/j.matre.2022.100163
[19] D. Andriani and Y. Bicer. 2023. “A Review of
Hydrogen Production from Onboard Ammonia
Decomposition: Maritime Applications of
Concentrated Solar Energy and Boil-Off Gas
Recovery” Fuel, vol. 352, pp. 128900. DOI:
https://doi.org/10.1016/j.fuel.2023.128900
[20] D.K. Lim, A. B. Plymill, H. Paik, X. Qian, S.
Zecevic, C. R. I. Chisholm and S. M. Haile. 2020.
“Solid Acid Electrochemical Cell for the Production
Hydrogen from Ammonia”, Joule, 4(11), pp. 2338-
2347. DOI: https://doi.org/10.1016/j.joule.
2020.10.006
[21] P. Modisha and D. Bessarabov. 2016.
“Electrocatalytic Process for Ammonia Electrolysis:
A Remediation Technique with Hydrogen Co-
Generation”, Int. J. Electrochem. Sci., vol. 11, pp.
6627-6635. DOI:10.20964/2016.08.54
[22] P. Peng, J. Su and H. Breunig. 2023.
“Benchmarking plasma and electrolysis
decomposition technologies for ammonia to power
generation”, Energ. Convers. Manage., vol. 288, pp.
117166. DOI:
https://doi.or/10.16/j.enconman.2023.117166
[23] H. Maleki and V. Bertola. 2022. “Co-Ce-Al-O
mesoporous catalysts for hydrogen generation via
ammonia decomposition” Int. J. Hydrog. DOI:
https://doi.org/10.1016/j.ijhydene.2022.06.021
[24] V. A. Borisov, K. N. Iost, V. L. Temerev, M. M.
Simunin, N.N.Leont’eva, Y. L. Mikhlin, M. N.
Volochaev and D. A. Shlyapin. 2022. “Ammonia
decomposition Ru catalysts supperted on alumina
nanofibers for hydrogen generation” Mater. Lett., vol.
306, pp. 130842. DOI:
https://doi.org/10.1016/j.matlet.2021.130842
[25] C. Huang, Y. Yu, X. Tang, Z. Liu, J. Zhang, C.
Ye, Y. Ye and R. Zhang. 2020. “Hydrogen generation
by ammonia decomposition over Co/CeO2 catalyst:
Influence of support morphologies”, Appl. Surf. Sci.,
vol 532, pp. 147335. DOI:
https://doi.org/10.1016/j.apsusc.2020.147335
[26] S. Chiuta, R. C. Everson, H. W. J. P. Neomagus,
P. Van der Gryp and D. G. Bessarabov. 2013.
“Reactor technology options for distributed hydrogen
generation via ammonia decomposition: A review”,
Int. J. Hydrog, vol. 38, pp. 14968-14991 DOI:
http://dx.doi.org/10.1016/j.ijhydene.2013.09.067
[27] J. Liu, B. Chen, Y. Kou, Z. Liu, X. Chen, Y. Li,
Y. Deng, X. Han, W. Hu and C. Zhong. 2016. “Pt-
decorated highly porous flower-like Ni particles with
high mass activity for ammonia electro-oxidation”, J.
Mater. Chem. A., vol. 4, no. 28, pp. 11060-11068.
DOI:10.1039/C6TA02284G
[28] H. Zhang, Y. Wang, Z. Wu and D. Y. C. Leung.
2017. “An ammonia electrolytic cell with NiCu/C as
anode catalyst for hydrogen production”, Energy
Procedia, vol. 142, pp. 1539-1544.
DOI:10.1016/j.egypro.2017.12.605
[29] P. K. Dubey, A. S. K. Sinha, S. Talapatra, N.
Koratkar, P. M. Ajayan, and O. M. Srivastava. 2010.
“Hydrogen generation by water electrolysis using
carbon nanotube anode”, Int. J. Hydrog, vol. 35, pp.
3945-3950. DOI:10.1016/j.ijhydene.2010.01.139
[30] Z. D. Wei, M. B. Ji, S. G. Chen, Y. Liu, C. X.
Sun, G. Z. Yin, P. K. Shen and S. H. Chan. 2007.
“Water electrolysis on carbon electrodes enhanced by
surfactant”, Electrochim. Acta, vol. 52, pp. 3323-
3329. DOI:10.1016/j.electacta.2006.10.011
[31] Yaorong Li, M. Nagao, K. Kobayashi, Y. Jin,
and T. Hibino. 2020. “A Cellulose Electrolysis Cell
with Metal-Free Carbon Electrodes”, Catalysts,
10(1), pp.106. DOI:10.3390/catal10010106