Revista de Ciencias Tecnológicas (RECIT). Volumen 1 (1): 27-43.
40
ISSN: 2594-1925
[31] D. T. Pham and R. S. Gault, “A comparison of rapid
prototyping technologies,” Int. J. Mach. Tools Manuf., vol.
38, no. 10–11, pp. 1257–1287, Oct. 1998.
https://doi.org/10.1016/S0890-6955(97)00137-5.
[32] Y. Jin, Y. He, J. Fu, W. Gan, and Z. Lin,
“Optimization of tool-path generation for material
extrusion-based additive manufacturing technology,”
Addit. Manuf., vol. 1–4, pp. 32–47, Oct. 2014.
https://doi.org/10.1016/j.addma.2014.08.004.
[33] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik,
“Optimization of fused deposition modeling process
parameters for dimensional accuracy using I-optimality
criterion,” Measurement, vol. 81, pp. 174– 196, 2016.
https://doi.org/10.1016/j.measurement.2015.12.011.
[34] B. Ezair, F. Massarwi, and G. Elber, “Orientation
analysis of 3D objects toward minimal support volume in
3D-printing,” Comput. Graph., vol. 51, pp. 117–124,
Oct. 2015. https://doi.org/10.1016/j.cag.2015.05.009.
[35] K. Hu, S. Jin, and C. C. L. Wang, “Support slimming
for single material based additive manufacturing,”
Comput. Des., vol. 65, pp. 1–10, Aug. 2015.
https://doi.org/10.1016/j.cad.2015.03.001.
[36] P. J. Nuñez, A. Rivas, E. García-Plaza, E. Beamud,
and A. Sanz-Lobera, “Dimensional and Surface Texture
Characterization in Fused Deposition Modelling (FDM)
with ABS plus,” Procedia Eng., vol. 132, pp. 856–863,
2015. https://doi.org/10.1016/j.proeng.2015.12.570.
[37] J. Kotlinski, “Mechanical properties of commercial
rapid prototyping materials,” Rapid Prototyp. J., vol. 20,
no. 6, pp. 499– 510, Oct. 2014.
https://doi.org/10.1108/RPJ-06-2012-0052.
[38] Z. Quan, A. Wu, M. Keefe, X. Qin, J. Yu, J. Suhr, J.-
H. Byun, B.-S. Kim, and T.-W. Chou, “Additive
manufacturing of multi- directional preforms for
composites: opportunities and challenges,” Mater J. Today,
vol. 18, no. 9, pp. 503–512, Nov. 2015.
https://doi.org/10.1016/j.mattod.2015.05.001.
Wulfsberg, A. Herrmann, G. Ziegmann, G. Lonsdorfer, N.
Stöß, and M. Fette, “Combination of Carbon Fibre Sheet
Moulding Compound and Prepreg Compression Moulding
in Aerospace Industry,” Procedia Eng., vol. 81, pp. 1601–
1607, 2014. https://doi.org/10.1016/j.proeng.2014.10.197.
[39] A. R. Torrado, C. M. Shemelya, J. D. English, Y. Lin,
R. B. Wicker, and D. A. Roberson, “Characterizing the
effect of additives to ABS on the mechanical property
anisotropy of specimens fabricated by material extrusion
3D printing,” Addit. Manuf., vol. 6, pp. 16–29, 2015.
https://doi.org/10.1016/j.addma.2015.02.001.
[40] N. G. Tanikella, B. Wittbrodt, and J. M. Pearce,
“Tensile strength of commercial polymer materials for
fused filament fabrication 3D printing,” Addit. Manuf.,
vol. 15, pp. 40–47, May 2017.
https://doi.org/10.1016/j.addma.2017.03.005.
[41] J. Lee and A. Huang, “Fatigue analysis of FDM
materials,” Rapid Prototyp. J., vol. 19, no. 4, pp. 291–299,
Jun. 2013. https://doi.org/10.1108/13552541311323290.
[42] Y. Xu, “Experimental Study of ABS Material
Shrinkage and Deformation Based on Fused Deposition
Modeling,” MATEC Web Conf., vol. 67, 2016.
https://doi.org/10.1051/matecconf/20166703039.
[43] D. Gu, “Materials creation adds new dimensions to 3D
printing,” Sci. Bull., vol. 61, no. 22, pp. 1718–1722, 2016.
https://doi.org/10.1007/s11434-016-1191-y.
[44] P. Dudek, “FDM 3D Printing Technology in
Manufacturing Composite Elements,” Arch. Metall.
Mater., vol. 58, no. 4, pp. 1415– 1418, Jan. 2013.
https://doi.org/10.2478/amm-2013-0186.
[45] F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang
“Additive manufacturing of carbon fiber reinforced
thermoplastic composites using fused deposition
modeling,” Compos. Part B Eng., vol. 80, pp. 369–378,
Oct. 2015.
https://doi.org/10.1016/j.compositesb.2015.06.013.
[46] C. Yang, X. Tian, T. Liu, Y. Cao, and D. Li, “3D
printing for continuous fiber reinforced thermoplastic
composites: Mechanism and performance,” Rapid
Prototyp. J., vol. 23, no. 1, pp. 209–215, 2017.
https://doi.org/10.1108/RPJ-08-2015-0098.
[47] R. Matsuzaki, M. Ueda, M. Namiki, T.-K. Jeong, H.
Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, and Y.
Hirano, “Three-dimensional printing of continuous- fiber
composites by in- nozzle impregnation,” Sci. Rep., vol. 6,
p. 23058, Mar. 2016. https://doi.org/10.1038/srep23058.
[48] F. Wang, R. Y. Hong, W. G. Feng, D. Badami, and K.
Zeng, “Electrical and mechanical properties of
ABS/EPDM composites filled with carbon black,”
2014.
https://doi.org/10.1016/j.matlet.2014.03.136.
[49] Z. Weng, J. Wang, T. Senthil, and L. Wu, “Mechanical
and thermal properties of ABS/montmorillonite
nanocomposites for fused deposition modeling 3D
printing,” Mater. Des., vol. 102, pp. 276–283, 2016.
https://doi.org/10.1016/j.matdes.2016.04.045.
[50] E. J. McCullough and V. K. Yadavalli, “Surface
modification of fused deposition modeling ABS to enable
rapid prototyping of biomedical microdevices,” J. Mater.
Process. Technol., vol. 213, no. 6, pp. 947– 954, Jun. 2013.
https://doi.org/10.1016/j.jmatprotec.2012.12.015.
[51] S. J. Kalita, Biointegration of Medical Implant
Materials. Elsevier, 2010.
https://www.elsevier.com/books/biointegration-of-
medical-implant-materials/sharma/978-1-84569-509-5.
[52] X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, “3D
printing of polymer matrix composites: A review and
prospective,” Compos. Part B Eng., vol. 110, pp. 442–458,
Feb. 2017.
https://doi.org/10.1016/j.compositesb.2016.11.034.
[53] S. Bose, S. Vahabzadeh, and A. Bandyopadhyay,
“Bone tissue engineering using 3D printing,” Mater.
Today, vol. 16, no. 12, pp. 496–504, 2013.
https://doi.org/10.1016/j.mattod.2013.11.017.