Revista de Ciencias Tecnológicas (RECIT): Volumen 7 (3): e288.
11 ISSN: 2594-1925
and Use Cases», J. Comput. Inf. Syst., vol. 0, n.o
0, pp. 1-22, 2023, doi:
10.1080/08874417.2022.2121782.
[9] A. Khanna y S. Kaur, «Internet of Things
(IoT), Applications and Challenges: A
Comprehensive Review», Wirel. Pers. Commun.,
vol. 114, n.o 2, pp. 1687-1762, sep. 2020, doi:
10.1007/s11277-020-07446-4.
[10] N. V. Kirianaki, S. Y. Yurish, y N. O.
Shpak, «Methods of dependent count for
frequency measurements», Measurement, vol.
29, n.o 1, pp. 31-50, ene. 2001, doi:
10.1016/S0263-2241(00)00026-9.
[11] D. V. Laptev y I. A. Pasynkov,
«Comparison of measuring time of frequency by
methods counting and coincidence», en 2016
13th International Scientific-Technical
Conference on Actual Problems of Electronics
Instrument Engineering (APEIE), oct. 2016, pp.
294-298. doi: 10.1109/APEIE.2016.7802280.
[12] V. A.i, L. I.m, A. P.l, y Y. S.i, «Frequency
instability measurement device based on the
pulse coincidence principle», Вісник
Національного Технічного Університету
України Київський Політехнічний Інститут
Серія Радіотехніка Радіоапаратобудування,
n.o 76, Art. n.o 76, 2019.
[13] S. Johansson, «New frequency counting
principle improves resolution», en Frequency
Control Symposium and Exposition, 2005.
Proceedings of the 2005 IEEE International,
ago. 2005, p. 8 pp.-. doi:
10.1109/FREQ.2005.1574007.
[14] D. Hernández Balbuena, O. Sergiyenko,
V. Tyrsa, L. Burtseva, y M. R. López, «Signal
frequency measurement by rational
approximations», Measurement, vol. 42, n.o 1,
pp. 136-144, ene. 2009, doi:
10.1016/j.measurement.2008.04.009.
[15] F. N. Murrieta-Rico et al., «Pulse width
influence in fast frequency measurements using
rational approximations», Measurement, vol. 86,
pp. 67-78, may 2016, doi:
10.1016/j.measurement.2016.02.032.
[16] F. N. Murrieta-Rico et al., «Optimization
of pulse width for frequency measurement by the
method of rational approximations principle»,
Measurement, vol. 125, pp. 463-470, sep. 2018,
doi: 10.1016/j.measurement.2018.05.008.
[17] J. de D. Sanchez-Lopez et al., «Effect of
phase in fast frequency measurements for sensors
embedded in robotic systems», Int. J. Adv. Robot.
Syst., vol. 16, n.o 4, p. 1729881419869727, jul.
2019, doi: 10.1177/1729881419869727.
[18] F. N. Murrieta-Rico et al., «Phase effect
in frequency measurements of a quartz crystal
using the pulse coincidence principle», en 2020
IEEE 29th International Symposium on
Industrial Electronics (ISIE), jun. 2020, pp. 185-
190. doi: 10.1109/ISIE45063.2020.9152255.
[19] F. N. Murrieta-Rico, V. Petranovskii, R.
I. Yocupicio-Gaxiola, y V. Tyrsa, «Zeolite-
Based Optical Detectors», Optoelectronics in
Machine Vision-Based Theories and
Applications. Accedido: 29 de enero de 2021.
[En línea]. Disponible en: www.igi-
global.com/chapter/zeolite-based-optical-
detectors/209826
[20] X. Li, A. Wen, X. Li, y Z. Wang,
«Photonic-assisted Approach to Simultaneous
Measurement of Frequency and Angle-of-
arrival», J. Light. Technol., pp. 1-11, 2023, doi:
10.1109/JLT.2023.3300078.
[21] J. Kneifel, R. Roj, H.-B. Woyand, R.
Theiß, y P. Dültgen, «An IIoT-Device for
Acquisition and Analysis of High-Frequency
Data Processed by Artificial Intelligence», IoT,
vol. 4, n.o 3, Art. n.o 3, sep. 2023, doi:
10.3390/iot4030013.
[22] F. N. Murrieta-Rico et al., «Rational
approximations principle for frequency shifts
measurement in frequency domain sensors», en
IECON 2015 - 41st Annual Conference of the
IEEE Industrial Electronics Society, nov. 2015,
pp. 000226-000231. doi:
10.1109/IECON.2015.7392103.
[23] F. N. Murrieta-Rico, V. Petranovskii, O.
Y. Sergiyenko, D. Hernandez-Balbuena, y L.
Lindner, «A New Approach to Measurement of