Revista de Ciencias Tecnológicas (RECIT). Volumen 3 (1): 10-22.
Revista de Ciencias Tecnológicas (RECIT). Universidad Autónoma de Baja California ISSN 2594-1925
Volumen 1 (1): 8-11 Julio-Septiembre 2018 https://doi.org/10.37636/recit.v11811
8
ISSN: 2594-1925
Silver Nanoparticles as Nanoantibiotics:
A Comparative Analysis of their Toxicity on Biological
Systems of Different Complexity
Nanopartículas de plata como nanoantibióticos:
Un análisis comparativo de su toxicidad en sistemas biológicos
de diferente complejidad
Vázquez-Muñoz Roberto
1,2
, Borrego-Rivero Belén
3
, Juárez-Moreno Karla Oyuky
1
, García-
García Maritza Roxana
1
, Mota Morales Josué David
1,4
, Bogdanchinkova Nina
1
, Huerta-
Saquero Alejandro
1
1
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107,
Carretera Tijuana-Ensenada. CP 22860, Ensenada, Baja California, México.
2
Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada,
3918. CP 22860, Ensenada, Baja California, México.
3
Centro de Investigación en Sanidad Animal, INIA (National Research Institute for Agricultural and Food;
Technology), Carretera Algete el Casar s/n. 28130. Valdeolmos, Madrid, Spain.
4
Centro de Física Aplicada y Tecnología Avanzada. Universidad Nacional Autónoma de México,
Querétaro, Querétaro 76230, México.
Autor de correspondencia: Alejandro Huerta Saquero, Centro de Nanociencias y Nanotecnología, Universidad
Nacional Autónoma de México, Km 107; Carretera Tijuana-Ensenada. CP 22860, Ensenada, Baja California,
México. E-mail: saquero@cnyn.unam.mx. ORCID: https://orcid.org/0000-0002-0156-6773
Recibido: 30 de Noviembre del 2016 Aceptado: 18 de Diciembre del 2016 Publicado: 01 de Septiembre del 2018
Resumen. - Actualmente, las nanopartículas de plata (AgNPs) se estudian ampliamente para aplicaciones biomédicas, pero
a pesar de que los nanomateriales proporcionan muchos beneficios, recientemente su toxicidad comparativa apenas se ha
explorado. En el trabajo actual, la toxicidad de AgNPs en sistemas biológicos de diferentes niveles de complejidad se evaluó
de forma exhaustiva y comparativa. Los organismos incluyen virus, bacterias, microalgas, hongos, células animales y humanas
(incluidas líneas celulares cancerosas). Encontramos que el crecimiento de los sistemas biológicos de diferentes grupos
taxonómicos -in vitro, a nivel celular- se inhibe a concentraciones de AgNP dentro del mismo orden de magnitud (101 μg /
ml). Por lo tanto, la toxicidad de AgNPs no depende de la complejidad de los organismos. El hecho de que las células y los
virus se inhiban con una concentración de AgNP dentro del mismo orden de magnitud podría explicarse teniendo en cuenta
que la plata afecta las estructuras fundamentales de las células y virus por igual.
Palabras clave: Nanopartículas de Plata; Nanotoxicología; Complejidad de Sistemas Biológicos; Actividad Antimicrobiana.
Abstract. - Currently, silver nanoparticles (AgNPs) are extensively studied for biomedical applications, but although
nanomaterials provide many benefits, recently their comparative toxicity have barely been explored. In the current work,
AgNPs toxicity on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way.
The organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). We found
that growth of biological systems of different taxonomical groups in vitro, at a cellular level- is inhibited at concentrations of
AgNPs within the same order of magnitude (101 μg/ml). Thus, the AgNPs toxicity does not depend on the complexity of the
organisms. The fact that cells and virus are inhibited with a concentration of AgNPs within the same order of magnitude could
be explained considering that silver affects fundamental structures for cells and virus alike.
Keywords: Silver Nanoparticles; Nanotoxicology; Biological Systems Complexity; Antimicrobial Activity.
Revista de Ciencias Tecnológicas (RECIT). Volumen 1 (1): 8-11.
77
ISSN: 2594-1925
1. Introduction
Silver nanoparticles (AgNPs) are among the most studied
nanomaterials due to all their applications. In the medical
field, AgNPs display antimicrobial and antiviral activity
[1]. Although their many benefits, their relative toxicity
has not been appropriately addressed. The few published
studies of toxic effects of AgNPs on biological systems,
i.e. viruses, bacteria or human cells, report different and
even contradictory results. The research of the AgNPs
comparative toxicity on different biological systems has
become a priority task.
It is generally assumed that the toxicity of AgNPs
decreases as the complexity of biological systems rises
[26]; but some studies suggest there is no such a
difference [7, 8]. Still, comparative analyses of the toxic
effects of a single silver nanoparticle on biological
systems of different level of complexity are scarce and
are not extensive [5, 9]. Also, antimicrobial tests for
AgNPs are not standardized leading to limited capacity
to assess the toxic effect of AgNPs on different taxa.
We performed a comparative analysis of the toxic effects
of a single type of AgNPs, on biological systems of
different cellular / structural complexity, from viruses to
human cancer cell lines. Also, the implications of such
analysis are discussed.
2. Methodology
2.1. Virus, microorganisms, cells and culture
conditions
For the systematic, comparative analysis, we used the
following biological models: Rift Valley Fever Virus
(RVFV) MP12 strain from the National Research
Institute of Agricultural and Food Technology, Spain;
The bacteria Escherichia coli DH5α (Gram-negative)
and Staphylococcus aureus (Gram-positive), from the
Centro de Nanociencias y Nanotecnología Universidad
Nacional Autónoma de México; the microalgae
Rhodomonas sp., from the Faculty of Marine Sciences of
the Universidad Autónoma de Baja California; The fungi
Candida albicans ATCC SC5614 (dimorphic yeast) and
Fusarium oxysporum, Race III, (filamentous), from the
Centro de Investigación Científica y Educación Superior
de Ensenada; the mammalian cells were Dendritic Cells
from Murine models and Vero cells (ATCC CCL-81); the
human cancer cells lines HeLa and MDA-MB-231
from the ATCC.
2.2 AgNPs preparation and characterization
The AgNPs are stabilized with
Polyvinylpyrrolidone (PVP). These PVP-AgNPs
were obtained from Vector Vita Ltd® (Russia).
AgNPs were analyzed by UV-Vis
spectrophotometry (Multiskan Go, Thermo
Scientific), λ= 200-800 nm. Also, an FT-IR
spectroscopy analysis was performed λ=4000-400
cm
-1
(Nicolet 6700; Thermo Scientific). The
morphology was examined by Transmission
Electron Microscopy in a Jeol JEM 2100. AgNPs
dilutions were prepared in a range from 0.001 to 100
μg/ml of silver.
2.3 Toxicological assays
For the virus infection assays, 0.3 to 3x10
2
plaque-
forming units (PFU) of RVFV were incubated with
AgNPs. After, viruses were inoculated onto Vero
cells grown in MW6 plates for 1 h, washed; and then
semi-solid medium with agar was added. Plates were
incubated until infection plaques were clearly
developed, then were fixed and stained with crystal
violet dye. For bacteria and fungi, the M09 and M27
microdilution assays, respectively, from the Clinical
Laboratory Standard Institute were used, with some
modifications (YPD culture media for fungi).
Microbial cultures were exposed to AgNPs.
Inhibition was measured by UV-Vis
spectrophotometry. Microalgae inoculum was
adjusted to an optical density of 0.065 at λ= 670 nm
in a Jenway 6505 UV-Vis spectrophotometer.
Microalgae were cultured in F2 media, and exposed
to AgNPs, for 24 h, at room temperature, and under
continuous light conditions. Murine bone marrow
derived dendritic cells were grown in RPMI culture
media, supplemented with 10 % FBS, 1% of
streptomycin-penicillin G, at 37 °C with 5% CO
2
atmosphere. Cytotoxicity was evaluated with the
dual fluorescein diacetate /ethidium bromide test
after 24 h of cell incubation with AgNPs. Vero cells
were seeded in 96-multiwell plates with DMEM
media, and 24 h later, the AgNPs were added to the
medium, then incubated for 24 h more, at 37 ºC.
Viability was evaluated by the MTS Cell
Proliferation Assay (Promega). HeLa and MDA-
Revista de Ciencias Tecnológicas (RECIT). Volumen 1 (1): 8-11
10
ISSN: 2594-1925
MB-231 cancer cell lines were cultured in RPMI-
1640 or DMEM media supplemented with 10% FBS,
1 % penicillin-streptomycin, 1 % L-glutamine and
1.5 g/l sodium bicarbonate. Cells were maintained at
37 °C and 5 % CO
2
. Cell viability was assessed by
the MTT method reported by Mosmann [10].
3. Results and Discussions
3.1 AgNPs characterization
AgNPs are spheroids of 35 ± 15 nm in diameter
(fig. 1a). UV-Vis analysis shows a peak at 410
nm, which is typical for metallic silver
nanoparticles (fig. 1b). FT-IR measurements of
lyophilized AgNPs presented a profile similar to
the PVP standard.
Figure 1. AgNPs characterization. TEM micrography and UV-Vis profile.
3.2 Toxicological assays
Plaque-forming units of RVFV were reduced by 98
% at a concentration of 12 μg/ml of silver. The
minimum inhibitory concentration (MIC) for the
bacterial strains E. coli and S. aureus, was 12 μg/ml
of Ag. The Effective Lethal Concentration for the
microalgae Rhodomonas sp. was 4 μg/ml of Ag. In
fungi, the MIC was 42 μg/ml for C. albicans, and, 20
μg/ml for F. oxysporum. The Lethal Dose in all
animal and cancer cells ranged from 10 to 12 μg/ml
of Ag. In summary, AgNPs exerted inhibitory effects
in all biological models tested in vitro (figure 1). We
also performed an exhaustive literature revision
regarding the toxicity of AgNPs in organisms of
different taxonomic groups (included in figure 2).
We only considered those studies with an adequate
characterization of the AgNPs. AgNPs toxicity is not
related to the complexity of the cell (structural or
physiological) [11].
Figure 2. Inhibition concentration range (green slim bars)
of the AgNPs, as reported in different works. Most studies
show an inhibitory concentration of 10
1
μg/ml of silver
AgNPs- (orange boxes). The blue dots show the
concentration values determined in our study, using the
same nanomaterial (PVP-AgNPs) for all the biological
systems tested. Modified from Vazquez-Muñoz et al [11]
Revista de Ciencias Tecnológicas (RECIT). Volumen 1 (1): 8-11
11
ISSN: 2594-1925
4 Conclusions
To the best of our knowledge, no other single
nanomaterial has been tested in such a wide spectrum of
BS of different levels of cellular/structural complexity,
ranging from virus to human cell lines. Our experimental
analysis showed that viruses and cells of different
complexity are inhibited in vitro at similar
concentrations of silver (10
1
μg/ml). Also, the meta-
analysis supports our results. Despite the differences
between the different AgNPs, the lethal concentration in
the majority of the studies for both viruses and cells
occurs within narrow concentration range around 10
1
μg/ml of Ag.
References
[1] H. H. Lara, E. N. Garza-Treviño, L. Ixtepan- Turrent, and D. K.
Singh, "Silver nanoparticles are broad-spectrum bactericidal and
virucidal compounds.," J. Nanobiotechnology, vol. 9, p. 30, 2011.
https://doi.org/10.1186/1477-3155-9-30
[2] G. Franci, A. Falanga, S. Galdiero, L. Palomba, and M. Rai,
"Silver nanoparticles as potential antibacterial agents," Molecules,
2015. https://doi.org/10.3390/molecules20058856
[3] J. Il Kwak and Y.-J. An, "Trophic transfer of silver nanoparticles
from earthworms disrupts the locomotion of springtails
(Collembola)," J. Hazard. Mater., May 2016.
https://doi.org/10.1016/j.jhazmat.2016.05.005
[4] F. Martinez-Gutierrez, P. L. Olive, A. Banuelos, E. Orrantia, N.
Nino, E. M. Sanchez, F. Ruiz, H. Bach, and Y. Av-Gay, "Synthesis,
characterization, and evaluation of antimicrobial and cytotoxic effect
of silver and titanium nanoparticles," Nanomedicine
Nanotechnology, Biol. Med., vol. 6, no. 5, pp. 681-688, 2010.
https://doi.org/10.1016/j.nano.2010.02.001
[5] A. Panáček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupová,
V. Kryštof, P. Hamal, R. Zbořil, and L. Kvítek, "Antifungal
activity of silver nanoparticles against Candida spp.,"
Biomaterials, vol. 30, no. 31, pp. 6333-6340, 2009.
https://doi.org/10.1016/j.biomaterials.2009.07.065
[6] F. Seitz, R. R. Rosenfeldt, K. Storm, G. Metreveli, G. E.
Schaumann, R. Schulz, and M. Bundschuh, "Effects of silver
nanoparticle properties, media pH and dissolved organic matter
on toxicity to Daphnia magna," Ecotoxicol. Environ. Saf., vol.
111, pp. 263-270, 2015.
https://doi.org/10.1016/j.ecoenv.2014.09.031
[7] C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M.
Epple, and M. Köller, "The toxic effect of silver ions and silver
nanoparticles towards bacteria and human cells occurs in the
same concentration range," RSC Advances, vol. 2, no. 17. p.
6981, 2012. https://doi.org/10.1039/c2ra20684f
[8] J. You, Y. Zhang, and Z. Hu, "Bacteria and bacteriophage
inactivation by silver and zinc oxide nanoparticles," Colloids
Surfaces B Biointerfaces, vol. 85, no. 2, pp. 161-167, 2011.
https://doi.org/10.1016/j.colsurfb.2011.02.023
[9] S. Ghosh, R. Kaushik, K. Nagalakshmi, S. L. Hoti, G. a.
Menezes, B. N. Harish, and H. N. Vasan, "Antimicrobial activity
of highly stable silver nanoparticles embedded in agar- agar
matrix as a thin film," Carbohydr. Res., vol. 345, no. 15, pp.
2220-2227, 2010. https://doi.org/10.1016/j.carres.2010.08.001
[10] T. Mosmann, "Rapid colorimetric assay for cellular growth
and survival: application to proliferation and cytotoxicity
assays.," J. Immunol. Methods, vol. 65, no. 1-2, pp. 55- 63, Dec.
1983. https://doi.org/10.1016/0022-1759(83)90303-4
[11] Vazquez-Muñoz, R., Borrego, B., Juárez- Moreno, K.,
García-García, M., Mota Morales, J. D., Bogdanchikova, N., &
Huerta-Saquero, A. (2017). Toxicity of silver nanoparticles in
biological systems: Does the complexity of biological systems
matter? Toxicology Letters, 276, 11-20.
https://doi.org/10.1016/j.toxlet.2017.05.007
Este texto esprotegido por una licencia Creative Commons 4.0
Usted es libre para Compartir copiar y redistribuir el material en cualquier medio o formato y Adaptar el documento
remezclar, transformar y crear a partir del material para cualquier propósito, incluso para fines comerciales, siempre que
cumpla la condición de:
Atribución: Usted debe dar crédito a la obra original de manera adecuada, proporcionar un enlace a la licencia, e indicar si se
han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que tiene el apoyo del
licenciante o lo recibe por el uso que hace de la obra.
Resumen de licencia - Texto completo de la licencia