Revista de Ciencias Tecnológicas (RECIT). Volumen 1 (1): 8-11
11
ISSN: 2594-1925
4 Conclusions
To the best of our knowledge, no other single
nanomaterial has been tested in such a wide spectrum of
BS of different levels of cellular/structural complexity,
ranging from virus to human cell lines. Our experimental
analysis showed that viruses and cells of different
complexity are inhibited in vitro at similar
concentrations of silver (10
1
μg/ml). Also, the meta-
analysis supports our results. Despite the differences
between the different AgNPs, the lethal concentration in
the majority of the studies for both viruses and cells
occurs within narrow concentration range around 10
1
μg/ml of Ag.
References
[1] H. H. Lara, E. N. Garza-Treviño, L. Ixtepan- Turrent, and D. K.
Singh, "Silver nanoparticles are broad-spectrum bactericidal and
virucidal compounds.," J. Nanobiotechnology, vol. 9, p. 30, 2011.
https://doi.org/10.1186/1477-3155-9-30
[2] G. Franci, A. Falanga, S. Galdiero, L. Palomba, and M. Rai,
"Silver nanoparticles as potential antibacterial agents," Molecules,
2015. https://doi.org/10.3390/molecules20058856
[3] J. Il Kwak and Y.-J. An, "Trophic transfer of silver nanoparticles
from earthworms disrupts the locomotion of springtails
(Collembola)," J. Hazard. Mater., May 2016.
https://doi.org/10.1016/j.jhazmat.2016.05.005
[4] F. Martinez-Gutierrez, P. L. Olive, A. Banuelos, E. Orrantia, N.
Nino, E. M. Sanchez, F. Ruiz, H. Bach, and Y. Av-Gay, "Synthesis,
characterization, and evaluation of antimicrobial and cytotoxic effect
of silver and titanium nanoparticles," Nanomedicine
Nanotechnology, Biol. Med., vol. 6, no. 5, pp. 681-688, 2010.
https://doi.org/10.1016/j.nano.2010.02.001
[5] A. Panáček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupová,
V. Kryštof, P. Hamal, R. Zbořil, and L. Kvítek, "Antifungal
activity of silver nanoparticles against Candida spp.,"
Biomaterials, vol. 30, no. 31, pp. 6333-6340, 2009.
https://doi.org/10.1016/j.biomaterials.2009.07.065
[6] F. Seitz, R. R. Rosenfeldt, K. Storm, G. Metreveli, G. E.
Schaumann, R. Schulz, and M. Bundschuh, "Effects of silver
nanoparticle properties, media pH and dissolved organic matter
on toxicity to Daphnia magna," Ecotoxicol. Environ. Saf., vol.
111, pp. 263-270, 2015.
https://doi.org/10.1016/j.ecoenv.2014.09.031
[7] C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M.
Epple, and M. Köller, "The toxic effect of silver ions and silver
nanoparticles towards bacteria and human cells occurs in the
same concentration range," RSC Advances, vol. 2, no. 17. p.
6981, 2012. https://doi.org/10.1039/c2ra20684f
[8] J. You, Y. Zhang, and Z. Hu, "Bacteria and bacteriophage
inactivation by silver and zinc oxide nanoparticles," Colloids
Surfaces B Biointerfaces, vol. 85, no. 2, pp. 161-167, 2011.
https://doi.org/10.1016/j.colsurfb.2011.02.023
[9] S. Ghosh, R. Kaushik, K. Nagalakshmi, S. L. Hoti, G. a.
Menezes, B. N. Harish, and H. N. Vasan, "Antimicrobial activity
of highly stable silver nanoparticles embedded in agar- agar
matrix as a thin film," Carbohydr. Res., vol. 345, no. 15, pp.
2220-2227, 2010. https://doi.org/10.1016/j.carres.2010.08.001
[10] T. Mosmann, "Rapid colorimetric assay for cellular growth
and survival: application to proliferation and cytotoxicity
assays.," J. Immunol. Methods, vol. 65, no. 1-2, pp. 55- 63, Dec.
1983. https://doi.org/10.1016/0022-1759(83)90303-4
[11] Vazquez-Muñoz, R., Borrego, B., Juárez- Moreno, K.,
García-García, M., Mota Morales, J. D., Bogdanchikova, N., &
Huerta-Saquero, A. (2017). Toxicity of silver nanoparticles in
biological systems: Does the complexity of biological systems
matter? Toxicology Letters, 276, 11-20.
https://doi.org/10.1016/j.toxlet.2017.05.007