9, pp. 762–798, Aug. 2007, doi:
10.1016/j.progpolymsci.2007.05.017.
[38] Y. S. Abdullaevich, Y. K. Ergashovich, S. A.
Abdukhalilovich, and G. I. Shavkat o’g’li, “Synthesis and
characterization of sodium-carboxymethylcellulose from
cotton, powder, microcrystalline and nanocellulose,”
Polym Eng Sci, vol. 62, no. 3, pp. 677–686, Mar. 2022, doi:
10.1002/PEN.25874.
[39] S. Ariaeenejad, H. Lanjanian, E. Motamedi, K.
Kavousi, A. A. Moosavi-Movahedi, and G. Hosseini
Salekdeh, “The Stabilizing Mechanism of Immobilized
Metagenomic Xylanases on Bio-Based Hydrogels to
Improve Utilization Performance: Computational and
Functional Perspectives,” Bioconjug Chem, vol. 31, no. 9,
pp. 2158–2171, Sep. 2020, doi:
10.1021/acs.bioconjchem.0c00361/suppl_file/bc0c00361_
si_001.pdf.
[40] Y. Shin et al., “Ph‐responsive succinoglycan‐
carboxymethyl cellulose hydrogels with highly improved
mechanical strength for controlled drug delivery systems,”
Polymers (Basel), vol. 13, no. 18, Sep. 2021, doi:
10.3390/polym13183197/s1.
[41] S. Mallakpour, M. Tukhani, and C. M. Hussain,
“Recent advancements in 3D bioprinting technology of
carboxymethyl cellulose-based hydrogels: Utilization in
tissue engineering,” Adv Colloid Interface Sci, vol. 292, p.
102415, Jun. 2021, doi: 10.1016/j.cis.2021.102415.
[42] S. Mallakpour, M. Tukhani, and C. M. Hussain,
“Recent advancements in 3D bioprinting technology of
carboxymethyl cellulose-based hydrogels: Utilization in
tissue engineering,” Adv Colloid Interface Sci, vol. 292, p.
102415, Jun. 2021, doi: 10.1016/j.cis.2021.102415.
[43] W. Otten, R. Pajor, S. Schmidt, P. C. Baveye, R.
Hague, and R. E. Falconer, “Combining X-ray CT and 3D
printing technology to produce microcosms with
replicable, complex pore geometries,” Soil Biol Biochem,
vol. 51, pp. 53–55, Aug. 2012, doi:
10.1016/j.soilbio.2012.04.008.
[44] N. D. Ferro and F. Morari, “From Real Soils to 3D-
Printed Soils: Reproduction of Complex Pore Network at
the Real Size in a Silty-Loam Soil,” Soil Science Society
of America Journal, vol. 79, no. 4, pp. 1008–1017, Jul.
2015, doi: 10.2136/sssaj2015.03.0097.
[45] D. Savvas and N. S. Gruda, “Application of soilless
culture technologies in the modern greenhouse industry-A
review Tomres: a Novel and Integrated Approach to
Increase Multiple and Combined Stress Tolerance In Plants
Using Tomato as a Model View Project Plants Special
Issue ‘Innovative Crop Management Practices for
Maximizing the Production of Vegetables’ View project,”
2018, doi: 10.17660/ejhs.2018/83.5.2.
[46] X. N. Zhang, Q. Zheng, and Z. L. Wu, “Recent
advances in 3D printing of tough hydrogels: A review,”
Compos B Eng, vol. 238, p. 109895, Jun. 2022, doi:
10.1016/j.compositesb.2022.109895.
[47] L. M. Kalossaka, G. Sena, L. M. C. Barter, and C.
Myant, “Review: 3D printing hydrogels for the fabrication
of soilless cultivation substrates,” Appl Mater Today, vol.
24, p. 101088, Sep. 2021, doi:
10.1016/j.apmt.2021.101088.
[48] J. R. Tumbleston et al., “Continuous liquid interface
production of 3D objects,” Science (1979), vol. 347, no.
6228, pp. 1349–1352, Mar. 2015, doi:
10.1126/science.aaa2397/suppl_file/tumbleston.sm.pdf.
[49] C. D. Spicer, “Hydrogel scaffolds for tissue
engineering: the importance of polymer choice,” Polym
Chem, vol. 11, no. 2, pp. 184–219, Jan. 2020, doi:
10.1039/C9PY01021A.
[50] J. Fu et al., “Combination of 3D printing technologies
and compressed tablets for preparation of riboflavin
floating tablet-in-device (TiD) systems,” Int J Pharm, vol.
549, no. 1–2, pp. 370–379, Oct. 2018, doi:
10.1016/j.ijpharm.2018.08.011.
[51] R. J. Mondschein, A. Kanitkar, C. B. Williams, S. S.
Verbridge, and T. E. Long, “Polymer structure-property
requirements for stereolithographic 3D printing of soft
tissue engineering scaffolds,” Biomaterials, vol. 140, pp.
170–188, Sep. 2017, doi:
10.1016/j.biomaterials.2017.06.005.
[52] C. G. Williams, A. N. Malik, T. K. Kim, P. N.
Manson, and J. H. Elisseeff, “Variable cytocompatibility
of six cell lines with photoinitiators used for polymerizing
hydrogels and cell encapsulation,” Biomaterials, vol. 26,
no. 11, pp. 1211–1218, Apr. 2005, doi:
10.1016/j.biomaterials.2004.04.024.