Revista de Ciencias Tecnológicas (RECIT). Volumen 1 (1): 1-7.
6
19, no. 38, pp. 6155– 6160, 2015.
https://doi.org/10.3969/j.issn.2095-4344.2015.38.016.
[42] H. B. Jeon, D. H. Kang, J. H. Gu, and S. A. Oh, “Delayed
foreign body reaction caused by bioabsorbable plates
used for maxillofacial fractures,” Arch. Plast. Surg., vol.
43, no. 1, pp. 40–45, 2016.
https://doi.org/10.5999/aps.2016.43.1.40
[43] L. Yang et al., “Complications of Absorbable Fixation in
Maxillofacial Surgery: A Meta- Analysis,” PLoS One,
vol. 8, no. 6, pp. 1–10, 2013.
https://doi.org/10.1371/journal.pone.0067449
[44] Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska,
“Biocompatibility and safety of PLA and its
copolymers,” Adv. Drug Deliv. Rev., vol. 107, pp. 153–
162, 2015. https://doi.org/10.1016/j.addr.2016.03.012
[45] F. Pena, T. Grontvedt, G. A. Brown, A. K. Aune, and L.
Engebretsen, “Comparison of failure strength between
metallic and absorbable interference screws. Influence of
insertion torque, tunnel-bone block gap, bone mineral
density, and interference,” Am J Sport. Med, vol. 24, no.
3, pp. 329–334, 1996.
https://doi.org/10.1177/036354659602400314
[46] H. Lim et al., “Comparison of resorbable plates and
titanium plates for fixation stability of combined
mandibular symphysis and angle fractures,” no.
December 2012, pp. 285–290, 2014.
https://doi.org/10.5125/jkaoms.2014.40.6.285
[47] M. J. Sánchez López, D. J.; Villegas Calvo, M.; Cambil,
“Sistemas biodegradables de fijación y reconstrucción
craneofacial,” Panor. Actual del Medicam., vol. 39, no.
381, pp. 237–240, 2015.
https://gruposdetrabajo.sefh.es/gps/images/stories/public
aciones/PAM_2015_381_237-240.pdf.
[48] R. L. Reyes and G. V. Gracia, “Uso de tornillos
bicorticales reabsorbibles como alternativa en cirugía
ortognática de mandíbula: presentación de 2 casos y
revisión de la literatura,” Rev. Odont. Mex vol.15 no.4,
pp. 239–243, 2011.
http://www.medigraphic.com/facultadodontologiaunam.
[49] R. M. Laughlin, M. S. Block, R. Wilk, R. B. Malloy, and
J. N. Kent, “Resorbable Plates for the Fixation of
Mandibular Fractures: A Prospective Study,” J. Oral
Maxillofac. Surg., vol. 65, no. 1, pp. 89–96, 2007.
https://doi.org/10.1016/j.joms.2005.10.055
[50] F. Atik, M. S. Ataç, A. Özkan, Y. Kilinç, and M. Arslan,
“Biomechanical analysis of titanium fixation plates and
screws in mandibular angle fractures,” Niger. J. Clin.
Pract., vol. 19, no. 3, pp. 386–390, 2016.
https://doi.org/10.4103/1119-3077.179292
[51] Y. Chen, Z. Xu, C. Smith, and J. Sankar, “Recent
advances on the development of magnesium alloys for
biodegradable implants,” Acta Biomater., vol. 10, no. 11,
p. 4561—4573, 2014.
https://doi.org/10.1016/j.actbio.2014.07.005
[52] S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal,
“Biodegradable magnesium alloys for orthopaedic
applications: A review on corrosion, biocompatibility
and surface modifications,” Mater. Sci. Eng. C. Mater.
Biol. Appl., vol. 68, p. 948—963, 2016.
https://doi.org/10.1016/j.msec.2016.06.020
[53] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias,
“Magnesium and its alloys as orthopedic biomaterials: a
review,” Biomaterials, vol. 27, no. 9, p. 1728—1734,
2006. https://doi.org/10.1016/j.biomaterials.2005.10.003
[54] G. Song and S. Song, “A possible biodegradable
magnesium implant material,” Adv. Eng. Mater., vol. 9,
no. 4, pp. 298–302, 2007.
https://doi.org/10.1002/adem.200600252
[55] F. Witte, “Reprint of: The history of biodegradable
magnesium implants: A review,” Acta Biomater., vol. 23,
no. S, pp. S28–S40, 2015.
https://doi.org/10.1016/j.actbio.2015.07.017
[56] H. Waizy et al., “In vivo study of a biodegradable
orthopedic screw (MgYREZr- alloy) in a rabbit model for
up to 12 months.,” J. Biomater. Appl., vol. 28, no. 5, pp.
667–75, 2014.
https://doi.org/10.1177/0885328212472215
[57] M. Ettinger et al., “The biomechanics of biodegradable
versus titanium interference screw fixation for anterior
cruciate ligament augmentation and reconstruction,” Int.
Orthop., vol. 38, no. 12, pp. 2499–2503, 2014.
https://doi.org/10.1007/s00264-014-2483-y
[58] L. Tan, X. Yu, P. Wan, and K. Yang, “Biodegradable
Materials for Bone Repairs: A Review,” J. Mater. Sci.
Technol., pp. 503–513, 2013.
https://doi.org/10.1016/j.jmst.2013.03.002
[59] R. A. Surmenev, M. A. Surmeneva, and A. A. Ivanova,
“Significance of calcium phosphate coatings for the
enhancement of new bone osteogenesis - A review,” Acta
Biomater., vol. 10, no. 2, pp. 557–579, 2014.
https://doi.org/10.1016/j.actbio.2013.10.036
[60] Denry and L. T. Kuhn, “Design and characterization of
calcium phosphate ceramic scaffolds for bone tissue
engineering,” Dent. Mater., vol. 32, no. 1, p. 43—53,
2016. https://doi.org/10.1016/j.dental.2015.09.008
[61] S. Reddy, S. Wasnik, A. Guha, J. M. Kumar, A. Sinha,
and S. Singh, “Evaluation of nano- biphasic calcium
phosphate ceramics for bone tissue engineering
applications: In vitro and preliminary in vivo studies,” J.
Biomater. Appl., vol. 27, no. 5, pp. 565–575, 2013.
https://doi.org/10.1177/0885328211415132
[62] P. Wang, L. Zhao, J. Liu, M. D. Weir, X. Zhou, and H. H.
K. Xu, “Bone tissue engineering via nanostructured
calcium phosphate biomaterials and stem cells,” Bone
Res., vol. 2, no. July, p. 14017, 2014.
https://doi.org/10.1038/boneres.2014.17
[63] S. Samavedi, A. R. Whittington, and A. S. Goldstein,
“Calcium phosphate ceramics in bone tissue engineering:
A review of properties and their influence on cell
behavior,” Acta Biomater., vol. 9, no. 9, pp. 8037–8045,
2013. https://doi.org/10.1016/j.actbio.2013.06.014