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Resumen. – Basado en el estrés verdadero σ_t, la última resistencia del material S_ut, y la curva de fatiga b, la 
curva S-N de material de acero dúctil es formulada. La distribución Weibull con parámetros β y η son usados para 

determinar la confiabilidad del elemento y ambos son directamente determinados por la resistencia del material 

que en este caso corresponde a 103 y 106 ciclos. Y como corresponde en la tabla de propiedades del acero A538 
A (b) y recolectada esta información del libro de Ingeniería mecánica de Shigley: los autores presentan el estrés 

verdadero, ultimo estrés y la curva de diferentes materiales. Entonces los parámetros Weibull β y η, así como los 
percentiles de confiabilidad 95 y 5 % de la curva S-N son presentados. Se presenta una aplicación paso por paso 

para el acero A538 A (b). Y basado en el máximo y mínimo estrés aplicado, la distribución Weibull correspondientes 

es presentada. Por último, basado en el máximo y mínimo estrés, la distribución Weibull correspondiente fue 
ajustada y usada con la resistencia de la distribución Weibull, en la función estrés-resistencia de confiabilidad con 

el objeto de estimar la confiabilidad del elemento. 
Palabras clave: Diseño mecánico; Estrés-resistencia; Distribución Weibull; Análisis de fatiga; Ingeniería de 

confiabilidad. 

Abstract. - Based on the true stress, the ultimate material’s strength, and the fatigue slope b values, the probabilistic 
percentiles of the S-N curve of ductile materials are formulated. The Weibull β and η parameters used to determine 

the product’s reliability are determined directly from the material’s strength values corresponding to 103 and 106 

cycles. And since in Table corresponding to the properties of this A538 A (b) steel and collected by table 23-A of 
Shigley Mechanical Engineering Design book; authors present the σt, Sut, and b values of several materials, then 

the Weibull parameters for each one of these materials as well as the 95% and 5% reliability percentiles of their S-
N curves are given. A step-by-step application to the steel A538 A (b) material is presented. And based on the 

maximum and minimum applied stress values, the corresponding Weibull stress distribution was fitted and used with 

the Weibull strength distribution, in the stress/strength reliability function to determine the element’s reliability. 
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1. Introduction 

 

Since the reliability of a mechanical component 

depends on the applied stress value and on the 

strength that the used material presents to 

overcome the applied stress, then because both the 

applied stress and the material’s strength are 

random variables, then researchers have been 

proposing to use a probabilistic stress-cycles S-N 

curves. However, because the probabilistic 

percentiles of the S-N curves are based on the 

common confidence interval (CL) of the expected 

average, as shown in section 3.3, then the proposed 

formulations are inefficient to perform a reliability 

analysis.  

 

Thus, in this paper based on the theory given in [1], 

a Weibull methodology to determine the strength 

distribution and the reliability percentiles of the S-

N curve are both given. In the proposed 

Weibull/tensile test methodology, the only needed 

inputs are 1) the ultimate material’s strength [2] 

(𝑆𝑢𝑡) value, (which is a measure of the 

maximum stress that an object/material/structure 

can withstand without being elongated, stretched 

or pulled).  2) the true stress (𝜎𝑡) [2] value, (which 

measures the change in the area with respect to the 

time while the specimen is loading), and 3) the 

fatigue slope b value of the S-N curve. With these 

three inputs, the corresponding strength Weibull 

shape β and scale 𝜂(𝜎) parameters used to 

determine the reliability percentiles of the S-N 

curve, are both determined based on the 𝑆𝑓 = 𝑓𝑆𝑢𝑡 

strength value that corresponds to 𝑁1 = 103 cycles 

and on the strength (𝑆𝑒) value that corresponds to 

𝑁1 = 106 cycles. The validation that the addressed 

strength β and 𝜂(𝜎) parameters completely 

represent the 𝑆𝑓 and 𝑆𝑒 values, is demonstrated by 

showing that by using the β and 𝜂(𝜎) parameters we 

always can reproduce the 𝑆𝑓 and 𝑆𝑒 values.  

 

And because in the Table A-23 of the Shigly’s 

book, for several steel materials, authors present 

their 𝑆𝑢𝑡, 𝜎𝑡 and b values, then in this paper by 

using the proposed methodology, their 

corresponding strength β and 𝜂(𝜎) parameters, the 

log-mean µ𝑥 and log-standard deviation (𝜎𝑥) 

values, as well as the 95% and 5% reliability 

percentiles of their S-N curves are all given in 

section 6. The novelty of the given reliability 

percentiles is that they do not represent a 

confidence interval CL of the S-N curve, instead 

they represent a reliability confidence interval for 

the S-N curve. But more importantly notice that 

because the S-N reliability percentiles are the 

reliability percentiles of the strength 𝜂(𝜎) 

parameter, then because in any Weibull analysis 

the reliability percentiles of 𝜂(𝜎) are always 

determined, then automatically we can use these 

𝜂(𝜎) percentiles as the corresponding S-N 

percentiles. Consequently, any Weibull strength 

analysis can be seeing as a representation of the 

reliability percentiles of the related S-N curve [3, 

4]. Additionally, because the reliability of the 

component depends on the applied stress and on its 

strength, then in section 5, the Weibull strength 

parameters that represents the desired S-N 

reliability percentiles, and the Weibull parameters 

that represents the applied stress, are both used in 

the stress/strength methodology [5] to determine 

the reliability of the designed element.   

 

The structure of the paper is as follows. Section 2 

presents the generalities of a tensile test. In section 

3, the steps of the proposed 

Weibull/Tensile/Reliability percentiles 

methodology are given. In section 4, a step-by-step 

application of the proposed method is given. In 

section 5, the stress/strength analysis to determine 

the reliability of the component is presented. In 

section 6 the Weibull β and 𝜂(𝜎) parameters, the 

95% and 5% reliability percentiles and the 

corresponding log-mean and log-standard 

deviation for each one of the steel materials given 

in the Table A-23 of the Shigly’s book are 

provided. Finally, in section 7, the conclusions are 

presented.  
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2. Tensile Test Generalities 

 

In general, in a tensile test the material properties 

are directly measured from a sample that is tested 

at controlled tension force (F) until failure. The 

most general material’s properties [2] are the 

ultimate tensile strength 𝑆𝑢𝑡, (it is a measure of the 

maximum stress that an object/material/structure 

can withstand without being elongated, stretched 

or pulled), the true stress  𝜎𝑡, (it measures the 

change in the area with respect to time while the 

specimen is loaded), the maximum elongation (L),  

and the reduction in the initial area (𝐴0).  

 

Since these material’s properties are random 

variables, then in the analysis a probability density 

function (pdf) must be used [6] pg.10. In the 

analysis, the most used pdfs are the normal, 

lognormal and Weibull distributions. Fortunately, 

as demonstrated in [7], for mechanical stress the 

best distribution is the Weibull distribution, and 

from [1] we have that from the Weibull analysis we 

always can reproduce the analyzed principal 

stresses (or strength) values. Therefore, in this 

paper the Weibull distribution is used. Also notice 

that for β≈3.4 the Weibull distribution efficiently 

mimics the normal distribution, and for β>5 [8], it 

efficiently mimics the lognormal distribution.  

 

However, before showing the Weibull distribution 

completely reproduce the used material’s strength 

values, let first present the generalities of a tensile 

test formulation. 

 

2.1 General Tensile Test Formulation 

 

In a tensile test analysis, by defining the 

engineering stress value as 𝜎 = 𝐹/𝐴0, and the 

engineering strain value as ɛ =
ΔL

L0
=

L−L0

L0
 where F 

is the applied force, 𝐴0 is the initial area of the 

tested element, and 𝐿0 is the initial length, and L is 

the final elongation of the tested element (see 

Fig.1).  

 
Figure 1. Test Specimen. Source: The Authors 

 

The relationships among the ultimate material’s 

strength 𝑆𝑢𝑡, the true stress 𝜎𝑡, and the true strain 

ɛ𝑡 values (see Fig. 2) on which the proposed 

method is based, are as follows. Based on both F 

and 𝐴0, the 𝑆𝑢𝑡 value is defined as  
 

𝑆𝑢𝑡 =
𝐹

A0
                                                                 (1) 

 

Therefore, based on the 𝑆𝑢𝑡 and ɛ values the true 

stress value defined as the instantaneous applied 

stress, at the 𝑆𝑢𝑡 coordinate, in terms of the 𝑆𝑢𝑡 and 

ɛ values are determined as  
 

𝜎𝑡 = 𝑆𝑢𝑡(1 − ɛ)                                                    (2) 

 

And the true strain value at the 𝑆𝑢𝑡 coordinate is 

given as 
 

ɛ𝑡 = ln(1 + ɛ)                                                    (3) 
 

 
Figure 2. Stress-Strain representation. Source: The Authors 

 

Thus, since now from Eq. (1) the 𝑆𝑢𝑡 value can be 

determined, and from Eq. (2), the corresponding 

𝜎𝑡 value is given, then now let present how the b 

value is determined. 
 

Lo
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Figure1. Test Specimen
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Figure 2. Stress – Strain Diagram
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https://en.wikipedia.org/wiki/Elongation_(materials_science)
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2.2 Fatigue Slope Formulation 

 

In the analysis, the fatigue slope b value of the S-N 

curve is the exponent that let us to determine the 

strength range that corresponds to a desired pair of 

life cycles values [1]. The common approach in the 

S-N analysis consists in determining b in the 

logarithm range given by 𝑁1 = 103 and 𝑁2 = 106 

cycles (see Fig.3).  In this logarithm scale the 

cycles-strength coordinates to determine b are [log 

(103), log(𝑓𝑆𝑢𝑡)] and [log(106) , log(𝑆𝑒)]. Where 

f represents the strength’s percentage that the 

material presents after 103 cycles, and 𝑆𝑒 

represents the corresponding fatigue strength limit. 

  

 
Figure 3. S-N curve representation. Source: The Authors 

 

Hence, since in this logarithm range the S-N curve 

behavior is linear given as 
 

𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖  for i=1,2                                      (4) 

 

Where 𝑌1 = 𝑙𝑜𝑔(𝑓𝑆𝑢𝑡), 𝑌2 = 𝑙𝑜𝑔(𝑆𝑒), 𝑋1 =
𝑙𝑜𝑔(103) and 𝑋2 = 𝑙𝑜𝑔(106), then the fatigue b 

and parameters of the S-N curve are determined as 
 

𝑏 = −
1

3
𝑙𝑜𝑔 (

𝑓𝑆𝑢𝑡

𝑆𝑒
)                                           (5a) 

𝑎 = 𝑙𝑜𝑔 (
(𝑓𝑆𝑢𝑡)

2

𝑆𝑒
)                                             (5b) 

 

Therefore, based on Eqs. (5a and 5b) the relation 

between the applied stress and its corresponding 

cycles to failure is given by the Basquin formula 

given as 

 

𝑁𝑖 = (
𝜎𝑒𝑞

𝑎
)
1/𝑏

                                                    (5c) 

 

However, when 𝑆𝑒 is unknown, then the fatigue b 

value defined in Eq.(5a), based on the 𝜎𝑡 value is 

given as  
 

𝑏 =
log(𝑓𝑆𝑢𝑡/𝜎𝑡)

log(2𝑁)
                                                 (6a) 

 

Consequently, the cycles to failure defined in 

Eq.(5c) based on the 𝜎𝑡 value is given as 
 

𝑁𝑖 =
1

2
𝑙𝑜𝑔 (

𝑓𝑆𝑢𝑡

𝜎𝑡
)
1/𝑏

                                          (6b) 

 

Now that from Eq. (5a and 6a) we can determine 

the b value, let present the methodology to 

determine the strength Weibull β and 𝜂(𝜎) 

parameters directly from the 𝑆𝑓 and 𝑆𝑒 values.   
 

 3. Weibull/Tensile Test/Reliability 

Methodology 

 

This section is structured to present 1) the steps to 

determine the strength Weibull β and 𝜂(𝜎) 

parameters directly from the maximum 𝑆𝑓 =

(𝑓𝑆𝑢𝑡) = 𝑆𝑚𝑎𝑥 and the minimum (𝑆𝑒) = 𝑆𝑚𝑖𝑛 

tensile strength values. 2) how to use the derived β 

and 𝜂(𝜎) parameters to determine the reliability 

percentile of the related S-N curve. And 3) how to 

determine the log-standard deviation 𝜎𝑥 value 

directly from the β value. Let start given the 

Weibull’s generalities. 

 

3.1 Generalities of the Weibull distribution 

 

For the two parameter Weibull distribution [9] 

given by 
 

 𝑓(𝑡𝑖) =
𝛽

𝜂
(
𝑡𝑖

𝜂
)
𝛽−1

𝑒𝑥𝑝 {− (
𝑡𝑖

𝜂
)
𝛽
}                               (7) 

 

Where t represents the desired life time, β is the 

shape parameter and η is the scale parameter. 

However, since in this paper the life of the element 

103 104 105 106 107

Se

Sf

S-N Diagram

Cycles

Figure 3. S-N Curve Representation
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is represented by either its cycles to failure N, or by 

its material’s strength 𝜎 value, then by replacing t 

in Eq. (7) with either 𝑁𝑖 or 𝜎𝑖, the corresponding 

Weibull reliability function is given as 

 

𝑅(𝑁𝑖𝑜𝑟𝜎𝑖) = 𝑒𝑥𝑝 {−(
𝑁𝑖

𝜂(𝑁)
)
𝛽

} = 𝑒𝑥𝑝 {−(
𝜎𝑖

𝜂(𝜎)
)
𝛽

}                                                     

(8) 

 

From Eq. (8), notice that 1) although to determine 

the reliability of the element we can use either 𝑁𝑖 

or 𝜎𝑖, the corresponding 𝜂(𝑁) and 𝜂(𝜎) values are 

different (𝜂(𝑁) ≠ 𝜂(𝜎)). And 2) the 𝜂(𝑁) and 𝜂(𝜎) 

values are related by the life/stress model, as can 

be the Arrhenius, the inverse power law model and 

the Basquin equation defined here in Eq.(5c). Also 

notice that because in Weibull analysis, by 

supposing the failure mode remains constant, then 

in the analysis the β value is considered to be 

constant [10]. Consequently, as shown in Eq. (8), 

in any Weibull analysis, we always have two 

Weibull families. One representing the cycles to 

failure W(β, 𝜂(𝑁)), and the other representing the 

material strength W(β, 𝜂(𝜎)). Here the analysis is 

performed based on the W(β, 𝜂(𝜎)) family. Now let 

present the steps to determine the β and 𝜂(𝜎) 

parameters directly form the tensile 𝑆𝑓 = (𝑓𝑆𝑢𝑡) =

𝑆𝑚𝑎𝑥 and (𝑆𝑒) = 𝑆𝑚𝑖𝑛 values. 
 

3.2 Steps to Determine the Weibull Strength 

Parameters 

 

Step1. From the used material determine the 

corresponding 𝑆𝑢𝑡, 𝜎𝑡 and fatigue slope b values. 

Step2. Determine the desired reliability R(n) index 

to perform the analysis. In practice, it is 

R(n)=0.9535. And it corresponds to test a set of 

n=21 parts [11]. From [11], the relation between 

R(n) and n is given as 
 

𝑅(𝑛) = exp {
−1

𝑛
}                                                (9) 

 

Note 1. Here observe R(n) is not the reliability of 

the element, instead R(n) is just the reliability on 

which the analysis will be performed. R(n) is alike 

the confidence interval CL used in the quality field. 

 

Step3. By using the n value of step 2 in Eq. (10), 

compute the 𝑌𝑖 elements [12] and its corresponding 

arithmetic mean µ𝑦 and standard deviation 𝜎𝑦 

values as  
 

𝑌𝑖 = 𝑙𝑛(−(𝑙𝑛(1 − (𝑖 − 0.3)/(𝑛 + 0.4))))        (10) 

Note 2. Observe, once n was selected in step 2, the 

µ𝑦 and 𝜎𝑦 values computed from the 𝑌𝑖 elements 

defined in Eq. (10) are both constant. For n=21 (or 

R(n)=0.9535) they are µ𝑦 = −0.54562412  and 

𝜎𝑦 = 1.17511694. In this paper these two values 

are used. 

 

Step 4. Based on Eq.(6b), by using 𝑁1 = 103 and 

the 𝜎𝑡 and b values of step1, determine the 

maximum strength 𝑆𝑓  value as 

 

𝑆𝑓 = 𝜎𝑡(2𝑁1)
𝑏                                                     (11) 

 

Note 3. Observe that because 𝑆𝑓 = 𝑓 ∗ 𝑆𝑢𝑡, then 

from Eq. (11) the f value is directly given as  𝑓 =
(𝑆𝑓)/𝑆𝑢𝑡. 

Step 5. If the 𝑆𝑒  value is unknown, then based on 

Eq.(6b), by using 𝑁2 = 106 and the 𝜎𝑡 and b values 

of step1 determine the minimum strength 𝑆𝑒  value 

as 
𝑆𝑒 = 𝜎𝑡(2𝑁2)

𝑏                                                    (12) 

 

Step 6. By using the µ𝑦 value from step 3, and the 

𝑆𝑓 and 𝑆𝑒 values, determine the strength Weibull 

shape parameters as 
 

𝛽 =
−4∗µ𝑦

0.99∗ln(𝑆𝑓/𝑆𝑒)
                                                  (13) 

 

Step 7. By using the addressed 𝑆𝑓 and 𝑆𝑒 values, 

determine the Weibull scale parameters as 
 

𝜂(𝜎) = √𝑆𝑓 ∗ 𝑆𝑒
2                                                 (14) 
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The β and 𝜂(𝜎) parameters determined in steps 6 

and 7 are the parameters of the Weibull strength 

distribution.  

 

Note 4. Notice if𝑓, 𝑆𝑢𝑡, and 𝑆𝑒 are known then 

from Eq.(5a) b can be estimated, implying the true 

stress 𝜎𝑡 value is not necessary. It is to say, as 

shown in Eqs. (13 and 14), the Weibull strength 

parameters only depends on the 𝑆𝑓 and 𝑆𝑒 values. 

 

Now based on the β and  𝜂(𝜎) parameters let 

determine the corresponding log-mean µ𝑥 and log-

standard 𝜎𝑥 deviation values used to formulate the 

confidence interval of µ𝑥. 

 

3.3 Steps to Determine the Log-mean and the 

Log-standard Deviation 

 

The analysis is based on the linear form of the 

reliability function [2] defined in Eq.(9) given as  
 

𝑌𝑖 = 𝑏0 + 𝛽𝑋𝑖                                                      (15) 

 

Thus, since from Eq. (15) 𝑋𝑖 = ln(𝑡𝑖), then we 

need to determine its log-mean µ𝑥 and its log-

standard deviation 𝜎𝑥 values.  From [1] the µ𝑥 

value is directly given by the strength scale 𝜂(𝜎) 

parameters as 
µ𝑥 = ln(𝜂(𝜎))                                                   (16a) 

 

And from [13], based on both the µ𝑦 value of step 

3, and on the addressed β value, the 𝜎𝑥 value is 

given as 
 

𝜎𝑥 =
𝜎𝑦

𝛽
                                                              (16b) 

 

Thus, a confidence interval (CL) of µ𝑥 is given as 
 

𝐶𝐿 = µ𝑥 ± 𝑍𝛼/2𝜎𝑥                                                (17) 

 

Where 𝑍𝛼/2 is the th desired percentile given by the 

normal distribution, (which for CL=0.95, is 

𝑍0.1/2 = 1.644853).  

 

Unfortunately, although from Eq. (16a) µ𝑥 =
ln(𝜂𝜎), the CL limits defined in Eq. (17) cannot be 

used to determine a confidence interval for 𝜂(𝜎).  

 

Consequently, Eq. (17) cannot be used to 

determine the reliability percentiles of the S-N 

curve neither. This fact occurs because there is not 

a direct relationship between CL and R(t). CL 

represents an instantaneous probability that the 

strength of n identical components behaves around 

µ𝑥, and R(t) represents the probability that a 

observed (measured) µ𝑥 value stay around this 

value through the time. It is to say, while the CL 

value depends only on the lack of homogeny of the 

material, the R(t) index depends also on the applied 

stress, the desired time t, and on the observed  µ𝑥 

value. Thus, Eq. (17) should not be used to 

determine the S-N percentiles that represents the 

desired R(t) index. Numerically, the deficiency of 

using CL in reliability analysis is given in section 

4.2. 

 

Here notice that in contrast to Eq. (17), in reliability 

analysis we are interested only in the upper limit. 

Consequently, since from Eq. (8) the R(t) index 

depends only on the 𝜂(𝜎) value, then because µ𝑥 =

ln(𝜂(𝜎)), in the analysis µ𝑥 is the lower allowed 

value that we can used to design the element. 

Therefore, as shown in [14] if µ𝑥 = ln(𝜂(𝜎)) is 

going to be monitored in a process, then in the 

monitoring control chart the µ𝑥 value must be set 

us the lower allowed value.  

 

Now based on the addressed µ𝑥 and 𝜎𝑥 values, let 

present the formulation to determine the reliability 

percentile of the related S-N curve. 

 

3.4 Reliability Percentiles for the S-N Curve 

 

The efficiency of the proposed method is based on 

the following two facts. 
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1) Since from Eq.(14), 𝜂(𝜎) is given as the square 

root of the product of S𝑓, and 𝑆𝑒, then in logarithm 

scale µ𝑥 = ln(𝜂(𝜎)) is the average between S𝑓 and 

S𝑒, implying that ln(𝑆𝑓) − ln(𝜂𝜎) = ln(𝜂𝜎) −

ln(𝑆𝑒) or equivalently that the relation given in 

Eq.(18) always holds 

 
ln(𝑆𝑓/𝜂𝜎) = ln(𝜂𝜎/𝑆𝑒)                                      (18) 

 

2) Because in logarithm scale the three values, 

ln(𝑆𝑓), ln(𝜂𝜎) and ln(𝑆𝑒), all are in the same S-

N line, then this line represents the lower th-

reliability percentile for which it is expected the 

product present the desired R(t) index. 

Consequently, from Eq. (18) and Eq. (8), we have 

that the following reliability relationship always 

holds    

𝑅(𝜎) = 𝑒𝑥𝑝 {− (
𝜂(𝜎)

𝜂𝜎𝑁𝑖
)
𝛽
} = 𝑒𝑥𝑝 {−(

𝑆𝑓𝑖

𝑆𝑓
)
𝛽

} =

𝑒𝑥𝑝 {−(
𝑆𝑒𝑖

𝑆𝑒
)
𝛽
}                                                    (19) 

 

Eq. (19) implies that in practice, the derived 

reliability percentiles of the S-N curve can also be 

used as the minimum strength 𝜂(𝜎𝑖) value that the 

used material must present to have the desired 

reliability. Now based on the above two facts, the 

steps to determine the reliability percentiles of the 

S-N curve are as follows. 

 

3.4.1 Steps to Determine the Reliability 

Percentiles for the S-N Curve 

 

Step 1. Determine the 𝑌𝑖 element that corresponds 

to the desired upper reliability percentile of the S-

N curve as  
 

𝑌𝑢𝑖 = 𝑙𝑛(−(𝑙𝑛(𝑅(𝑡𝑢𝑖)))                                       (20a) 

 

Step 2. Determine the 𝑌𝑖 element that corresponds 

to the desired lower reliability percentile of the S-

N curve as  
 

𝑌𝐿𝑖 = 𝑙𝑛(−(𝑙𝑛(1 − 𝑅(𝑡𝐿𝑖)))                                  (20b) 

 

Step 3. By using the 𝑌𝑢𝑖 value of step1, determine 

the upper values of 𝑆𝑓 , 𝜂𝜎, and 𝑆𝑒 that corresponds 

to the upper reliability percentile of the S-N curve 

as 

𝑆𝑓𝑢 =
𝑆𝑓

𝐸𝑥𝑝{𝑌𝑢𝑖/𝛽}
 ; 𝜂(𝜎𝑢) =

𝜂𝜎

𝐸𝑥𝑝{𝑌𝑢𝑖/𝛽}
 ; 𝑆𝑒𝑢 =

𝑆𝑒

𝐸𝑥𝑝{𝑌𝑢𝑖/𝛽}
                                                             

(21) 

 

Step 4. By using the 𝑌𝐿𝑖 value of step 2, determine 

the lower value of 𝑆𝑓 , 𝜂(𝜎), and 𝑆𝑒 that corresponds 

to the lower reliability percentile of the S-N curve 

as 

𝑆𝑓𝐿 =
𝑆𝑓

𝐸𝑥𝑝{𝑌𝐿𝑖/𝛽}
 ; 𝜂(𝜎𝐿) =

𝜂(𝜎)

𝐸𝑥𝑝{𝑌𝐿𝑖/𝛽}
 ; 𝑆𝑒𝐿 =

𝑆𝑒

𝐸𝑥𝑝{𝑌𝐿𝑖/𝛽}
                                                                 

(22) 

 

Step 5. Plot the upper and lower reliability 

percentiles.  

 

Now let present the numerical application. 
 

4. Numerical Application 

 

As an application let used data given in the first 

row of Table A-23 of the Shigly’s book. The 

material is the steel grade (a) A538A (b). For this 

material, the Weibull strength parameters of 

section 3.2 are as follows. 

 

4.1 Weibull Strength Parameters 
 

Step 1. The corresponding strength data are 𝑆𝑢𝑡 =
1515𝑀𝑃𝑎, 𝜎𝑡 = 1655𝑀𝑃𝑎 and fatigue slope b=–

0.065. 

Step 2. Suppose R(n)=0.9535 is desired. 

Step 3. The 𝑌𝑖 elements are given in Table 1. From 

these data µ𝑦 = −0.54562412  and 𝜎𝑦 =

1.17511694.   

Step 4. The maximum strength is 𝑆𝑓 = 1655(2 ∗

1000)−0.065 = 1009.79𝑀𝑃𝑎. 

Step 5. The minimum strength is 𝑆𝑒 = 1655(2 ∗
1000,000)−0.065 = 644.51𝑀𝑃𝑎. 

Step 6. The Weibull shape parameter is 𝛽 =
−4∗(−0.54562412)

0.99∗ln(1009.79/644.51)
= 4.909848. 
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Step 7. The Weibull scale parameter is𝜂(𝜎) =

√1009.79 ∗ 644.51
2

= 806.7353𝑀𝑃𝑎. 

 
Therefore the Weibull strength distribution to the steel 

grade (a) A538A (b) material is W(4.909848, 

806.7353MPa).  

 
Now based on these parameters let determine the 

corresponding log-mean µ𝑥 and log-standard 

deviation 𝜎𝑥 values mentioned in section 3.3. 
 

 
Source: The Authors 

Table 1. Elements of vector Y by using Eq.(10)

n 1 2 3 4 5 6 7 8 9 10 11

Y i -3.403483 -2.491662 -2.003463 -1.6616459 -1.3943983 -1.1720537 -0.9793812 -0.807447 -0.6504921 -0.50450882 -0.366512921

n 12 13 14 15 16 17 18 19 20 21 µy=-0.54562412

Y i -0.234122 -0.105285 0.0219284 0.1495258 0.279845 0.4159621 0.56250196 0.7276158 0.92931067 1.22965981 σy=1.17511694
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4.2 Log-mean and Log-standard Deviation 

 

From Eq. (16a), the log-mean is µ𝑥 =
ln(806.7353) = 6.692995 and from Eq.(16b) 

the log-standard deviation is 𝜎𝑥 =
1.17511694

4.909848
=

0.239338, (observe both µ𝑥 and 𝜎𝑥 were 

determined without any observed failure time 

data). Therefore, from Eq.(17), the 95% 

confidence interval for µ𝑥 is 𝐶𝐿 = 6.692995 ±
1.644853 ∗ 0.239338; [6.299319 ≤ µ𝑥 ≤
7.086673] or equivalently because from 

Eq.(16a) µ𝑥 = ln(𝜂(𝜎)), then by taking the 

exponential, the 95% confidence interval for  𝜂𝜎 

is [544.2009𝑀𝑃𝑎 ≤ 𝜂(𝜎) ≤ 1195.9219𝑀𝑃𝑎], 

unfortunately as shown next, this confidence 

interval should not be used in reliability analysis.  

For example, notice that although under 

probabilistic point of view we can say with a 

confidence level of 95% the lower expected 

value of the Weibull scale parameter is 𝜂(𝜎𝐿) =

544.2009𝑀𝑃𝑎, and then it should be monitored 

in the production process in logarithm scale as in 

Fig.4 and/or in natural scale as in Fig.5  

Figure 4. Control Chart for μx (logarithm Scale). Source: 

The Authors 

Figure 5. Control Chart for the Weibull scale parameter. 

Source: The Authors 

 

Unfortunately, as mentioned above in reliability, 

monitoring (or using) the lower limit of 𝜂(𝜎) is 

not correct because in reliability the addressed 

𝜂(𝜎) value (or nominal µ𝑥 value) is the lower 

allowed value. Thus, in the monitoring process, 

the 𝜂(𝜎) value (or equivalently the µ𝑥 value) is the 

one that must be set as the lower allowed limit in 

the control chart (see Fig.6 and Fig.7). 

  
Figure 6. Control Chart for μx (logarithm Scale). Source: 

The Authors 

 

 

Figure 7. Control Chart for the Weibull scale parameter. 

Source: The Authors 

 

Additionally, it is shown that although by using 

the CL limits defined in Eq. (17), the 95% 

confidence for the S-N curve plotted in Fig.8 is 

possible, they do not the 95% reliability 

confidence interval for the S-N curve. 

Consequently, because the CL confidence 

interval is not a reliability percentile, then by 

using the CL values in Eq. (19), the estimated 

reliability is not the desired R(t)=0.95 index.  

 
Figure 8. Probabilistic Percentiles for the S-N curve. 

Source: The Authors 
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Seeing this observe that by using the upper and 

lower limits of CL to determine R(𝜎), the 

demonstrated reliability is not the desired one. 

For the upper level 𝜂(𝜎𝑈) = 1195.9219𝑀𝑃𝑎, 

then with 𝜂(𝜎) = 806.7356𝑀𝑃𝑎 in Eq.(19), the 

estimated reliability instead of be 𝑅(𝜎) = 0.95 is 

only 𝑅(𝜎𝑈) = 𝑒𝑥𝑝 {− (
806.7356

1195.9219
)
4.909848

} =

0.8653.  

 

Similarly, if we use the lower confidence level 

𝜂(𝜎𝑈) = 544.2009𝑀𝑃𝑎 with 𝜂(𝜎) =

806.7356𝑀𝑃𝑎 in Eq.(19), the estimated 

reliability index instead of be 𝑅(𝜎) = 0.95, also 

is only of 𝑅(𝜎𝐿) = 𝑒𝑥𝑝 {− (
544.2009

806.7356
)
4.909848

} =

0.8653. 
 

Therefore, the general conclusion is that by using 

the CL limits in reliability analysis we sub-

estimate the real R(𝜎) index (0.8653<0.95) of the 

element, and consequently the CL limits should 

not be used in the reliability analysis.  

 

Now we know the CL values should not be used, 

let determine the reliability percentiles for the S-

N curve that we can use in any reliability 

analysis. Following section 3.4.1, the analysis is 

as follows. 

 

4.3 Reliability Percentiles for the S-N Curve 

 

The reliability percentile analysis for the S-N 

curve is as follows 

 

Step 1. From Eq.(20a) the upper 𝑌𝑖 element for 

R(t)=0.95 is 𝑌𝑢𝑖 = 𝑙𝑛(−(𝑙𝑛(0.95))) =
−2.970195249. 

 

Step 2. From Eq.(20b) the lower 𝑌𝑖 element for 

R(t)=0.05 is 𝑌𝐿𝑖 = 𝑙𝑛(−(𝑙𝑛(1 − 0.95))) =
1.0971887. 

 

Step 3. From Eq. (21) the upper strength values 

are    

 

 𝑆𝑓𝑢 =
1009.79𝑀𝑃𝑎

𝐸𝑥𝑝{−2.970195249/4.909848}
= 1849.08𝑀𝑃𝑎.  

 

 𝜂(𝜎𝑢) =
806.7353𝑀𝑃𝑎

𝐸𝑥𝑝{−2.970195249/4.909848}
= 1477.26𝑀𝑃𝑎  

 

and 𝑆𝑒𝑢 =
644.51𝑀𝑃𝑎

𝐸𝑥𝑝{−2.970195249/4.909848}
=

1180.20𝑀𝑃𝑎.   

 

Step 4. From Eq. (22) the lower strength values are   

  

𝑆𝑓𝐿 =
1009.79𝑀𝑃𝑎

𝐸𝑥𝑝{1.0971887/4.909848}
= 807.57𝑀𝑃𝑎,    

 

𝜂(𝜎𝐿) =
806.7353𝑀𝑃𝑎

𝐸𝑥𝑝{1.0971887/4.909848}
= 645.18𝑀𝑃𝑎 and  

 

𝑆𝑒𝐿 =
644.51𝑀𝑃𝑎

𝐸𝑥𝑝{1.0971887/4.909848}
= 515.44𝑀𝑃𝑎.   

 

From the above data, notice because the 𝑌𝑢𝑖 value was 

determined by using 𝑅(𝜎) = 0.95, then by using the 

𝑆𝑓𝑢 , 𝜂(𝜎𝑢) and 𝑆𝑒𝑢 values in Eq. (19), the reliability 

percentile is always 𝑅(𝜎) = 0.95.  

 

For 𝑅(𝜎/𝑆𝑓 , 𝑆𝑓𝑢) = 𝑒𝑥𝑝 {−(
1009.79

1849.08
)
4.909848

} =

0.95, 𝑅(𝜎/𝜂(𝜎), 𝜂(𝜎𝑢)) =

𝑒𝑥𝑝 {−(
806.7356

1477.26
)
4.909848

} = 0.95, and 𝑅(𝜎/

𝑆𝑒 , 𝑆𝑒𝑢) = 𝑒𝑥𝑝 {−(
644.51

1180.20
)
4.909848

} = 0.95.  

 

Similarly, since the 𝑌𝐿𝑖 value was determined by 

using 𝑅(𝜎) = 0.05, then by using the 𝑆𝑓𝐿, 𝜂(𝜎𝐿) 

and 𝑆𝑒𝐿 values in Eq. (19), the reliability 

percentile in all cases is always 𝑅(𝜎) = 0.05.  

 

For 𝑅(𝜎/𝑆𝑓 , 𝑆𝑓𝐿) = 𝑒𝑥𝑝 {−(
1009.79

807.57
)
4.909848

} =

0.05, 𝑅(𝜎/𝜂(𝜎) , 𝜂(𝜎𝐿)) =
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𝑒𝑥𝑝 {−(
806.7356

645.18
)
4.909848

} = 0.05 and 𝑅(𝜎/

𝑆𝑒 , 𝑆𝑒𝐿) = 𝑒𝑥𝑝 {−(
644.51

515.44
)
4.909848

} = 0.05.  

 

The corresponding percentiles of the S-N curve 

in MPa and in logarithm scale are all given in 

Table 2. 

 
                         Source: The Authors 

 

Here it is very important to notice from either 

Table 2 or Figure 9 that data in MPa do not fall 

in a right line with the 𝜂(𝜎) value.  

 

In contrast observe from Fig. 10 that in logarithm 

scale they are in line with the 𝜂(𝜎) value. Also 

notice from Fig.9 and Fig.10 that the upper and 

lower percentiles are not symmetric around the 

𝜂(𝜎) value, and that this fact is due to in Weibull 

analysis, the 𝜂(𝜎) does not represent the 0.50 

percentile, instead it represents the 0.6321 failure 

percentile, implying the limits around the 𝜂(𝜎) 

value never will be symmetric around the 𝜂(𝜎) 

value.  
 

   
Figure 9. S-N curve in MPa values. Source: The Authors 

 

Additionally, remember that as shown in Eq. 

(18), the symmetrical behavior around 𝜂(𝜎) 

occurs only for the 𝑆𝑓 and 𝑆𝑒 values from which 

the 𝜂(𝜎) value was determined. In order to clarify 

the mentioned facts, in Table 3 the Weibull 

analysis for the expected values of 𝜂(𝜎) are given.  
 

 
Figure 9. S-N curve in logarithm scale. Source: The 

Authors 

 

Table 2. Reliability Percentiles for the S-N curve of the A538A (b) steel

Limits Sf η(σ) Se ln(Sf) ln(η(σ)) ln(Se)

Upper 1849.08 1477.26 1180.20 7.5224 7.2979 7.0734

Mean 1009.79 806.74 644.51 6.9175 6.6930 6.4685

Lower 807.57 645.18 515.44 6.6940 6.4695 6.2450

Percentiles in Mpa Values Percentiles in logarithm scale
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Figure 10. S-N curve in logarithm scale
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Source: The Authors 

The practical interpretation of data given in Table 

3 is as follows. 

 

1. The values of the column 𝜎𝑖 in Table 3 

represent the maximum applied stress values for 

which a product that has the 𝜂(𝜎) strength value, 

will present the reliability R(t) index given in the 

row of Table 3 that corresponds to the selected 𝜎𝑖 
value. For example, if a component (material) 

with strength of 𝜂(𝜎) = 806.7353𝑀𝑃𝑎, is 

subjected to constant stress of 𝜎 =403.35MPa, 

then as shown in Table 3, it is expected the 

element will present a minimum reliability of 

exp {− (
403.35

806.7353
)
4.909848

} = 0.9673. In Table 3, 

by using the 𝑌𝑖 value defined in Eq. (10), the 

corresponding 𝜎𝑖 value was determined as 
 

𝜎𝑖 = 𝜂(𝜎) ∗ exp{𝑌𝑖/𝛽}                                      (23) 

 

2.  The values of the column 𝜂(𝜎𝑖) in Table 3, 

represent the strength value that a product should 

has to present the given reliability R(t) index 

when the applied stress is constant at the 𝜂(𝜎) 

value. For example, the 𝜂(𝜎𝑖) = 1613.55𝑀𝑃𝑎 

value given in the first row of Table 3, represents 

the minimum strength value that a product 

(material) must have to presents a reliability of 

𝑅(𝑡) = 0.9673 when the maximum applied 

stress is constant at the value of 𝜂(𝜎) =

806.7353𝑀𝑃𝑎. It is to say 

𝑅(𝑡) = exp {−(
806.7353

1613.55
)
4.909848

} = 0.9673. In 

Table 3, the 𝜂(𝜎𝑖) value was determined as 

 

𝜂(𝜎𝑖) = 𝜂(𝜎)/exp{𝑌𝑖/𝛽}                                     (24) 

 

From Table 3 also notice the rows where the 

Weibull analysis reproduce the 𝑆𝑓 =

1009.79𝑀𝑃𝑎 and 𝑆𝑒 = 644.51𝑀𝑃𝑎 values, as 

well as the upper 95% and lower 5% percentiles 

of  𝜂(𝜎) were also added. Also from Table 3, 

notice that as shown in Fig. 9 and in Fig. 10 the 

behavior around the 𝜂(𝜎) value is not 

symmetrical. Now let determine the reliability of 

a component by using the stress/strength 

analysis. 

 

5. Stress/Strength Analysis 

 

Since all mechanical element is subjected to an 

applied stress and it has an inherent strength to 

overcome the applied stress, then because both 

the stress and the strength are random variable, 

the element’s reliability must be determined 

based on the distribution that represent the 

applied stress, and on the distribution that 

Table 3. Weibull Scale Analysis

n Yi Yui σi η(σi) R(t)

1 -3.4035 0.5000 403.35 1613.55 0.9673

-2.9702 0.5461 440.56 1477.26 0.9500

2 -2.4917 0.6020 485.66 1340.07 0.9206

3 -2.0035 0.6649 536.44 1213.23 0.8738

4 -1.6616 0.7129 575.11 1131.64 0.8271

5 -1.3944 0.7528 607.28 1071.69 0.7804

6 -1.1721 0.7876 635.42 1024.24 0.7336

-1.1023 0.7989 644.51 1009.79 0.7174

7 -0.9794 0.8192 660.85 984.83 0.6869

8 -0.8074 0.8484 684.40 950.94 0.6402

9 -0.6505 0.8759 706.63 921.02 0.5935

10 -0.5045 0.9023 727.96 894.04 0.5467

11 -0.3665 0.9281 748.71 869.26 0.5000

12 -0.2341 0.9534 769.17 846.14 0.4533

13 -0.1053 0.9788 789.62 824.22 0.4065

0.0000 1.0000 806.735 806.735 0.3679

14 0.0219 1.0045 810.35 803.14 0.3598

15 0.1495 1.0309 831.68 782.54 0.3131

16 0.2798 1.0587 854.05 762.04 0.2664

17 0.4160 1.0884 878.06 741.20 0.2196

18 0.5625 1.1214 904.66 719.41 0.1729

19 0.7276 1.1597 935.60 695.62 0.1262

20 0.9293 1.2084 974.84 667.62 0.0794

1.0972 1.2504 1008.74 645.18 0.0500

1.1023 1.2517 1009.79 644.51 0.0492

21 1.2297 1.2846 1036.33 628.00 0.0327
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represent the inherent strength. Therefore, the 

right reliability function to be used in the analysis 

of a mechanical element is the composed 

reliability function known as a stress/strength 

reliability function [15]. In this stress/strength 

approach any pair of combination of stress and 

strength functions is possible. However, the most 

common combinations are the normal/normal, 

the log-normal/log-normal, the Weibull/Weibull 

and any pair of combination among these three 

distributions [16]. But because here the analysis 

is a stress-based analysis which is efficiently 

modeled by the Weibull distribution, then the 

Weibull/Weibull approach is used as follows. 

 

5.1 Numerical Analysis 

 

In this section, the strength Weibull distribution 

data addressed in section 4.1 of the steel grade (a) 

A538A (b) material is used. From this section the 

addressed Weibull strength family is W 

(β=4.909848, η(σ)=806.7353MPa). Therefore, to 

apply the stress/strength analysis the 

corresponding stress Weibull distribution must 

be addressed. Doing this, suppose from an 

application the maximum principal applied stress 

is 𝜎1 = 600𝑀𝑃𝑎 and the minimum principal 

applied stress that generates a failure is 𝜎2 =
380𝑀𝑃𝑎. (𝜎1𝑎𝑛𝑑𝜎2 are the principal stresses 

given by the Mohr circle analysis).  

 

Thus, with these two principal stress values, from 

Eq. (14) the scale Weibull stress parameter is 

𝜂𝑠 = √600 ∗ 380
2

= 447.4935𝑀𝑃𝑎, and from 

Eq. (13) β=4.909848. Thus, the Weibull stress 

distribution is Ws(β=4.909848, 

ηs=477.4935MPa). Consequently, from the 

Weibull/Weibull stress/strength reliability 

function [1] given as 
 

𝑅(𝑡/𝜂𝑠, 𝜂(𝜎𝑖)) =
𝜂(𝜎𝑖)^𝛽

𝜂(𝜎𝑖)^𝛽+𝜂𝑠^𝛽
                              (25) 

 

Therefore, the reliability of the designed 

component is 
 

𝑅(𝑡, 𝜂𝑠 , 𝜂(𝜎𝑖)) =
806.73534.909848

806.73534.909848 + 477.49354.909848
 

= 0.9292. 

 

Finally, it is important to observe because the 

reliability index given in Table 3 and that given 

from Eq. (25) tends to be the same for high 

reliability indices, (say a reliability above 0.90), 

then the reliability of an element can be 

determined directly by using the Weibull 

strength parameters as in Table 3, or by using the 

stress and strength distributions in Eq. (25).  

 

Seeing this numerically, suppose that in an 

application the used material is subjected to 

reversible stress with Weibull stress parameter 

ηs=403.35MPa. Therefore, from Eq. (25), as 

shown in Table 3, the estimated reliability is  

 

𝑅(𝑡, 𝜂𝑠, 𝜂(𝜎𝑖)) =
806.73534.909848

806.73534.909848 + 403.354.909848
 

Similarly, if the applied stress is ηs=536.44MPa, then  

 

it is 𝑅(𝑡, 𝜂𝑠, 𝜂(𝜎𝑖)) =
806.73534.909848

806.73534.909848+536.444.909848
=

0.8811. For detail of the given formulation see 

[1].  

 

Consequently, for high reliability indices, the 𝜎𝑖 
column of any Weibull Strength analysis can be 

used as the maximum allowed constant stress 

value that we can apply, in order the component 

presents the desired reliability. Similarly, the 

𝜂(𝜎𝑖) column of any Weibull Strength analysis 

can be used as the minimum allowed strength 

value that the used material must present, in order 

the designed element present the desired 

reliability when it is subjected to a maximum 

stress value represented by the strength scale 𝜂(𝜎) 

value. Now by using the proposed Weibull/S-N 

methodology, the Weibull parameters, the log-
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mean and log-standard deviation parameters and 

the 0.95 and 0.05 reliability percentiles of each 

one of the steel materials given in Table A-23 of 

the Shigly’s book are all given in Table 4.  

 

6. Weibull/S-N analysis for Materials given in 

Table A-23 of the Shigly’s book. 
 

The analysis is presented in Table 4. 
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 Table 4. Weibull Strength Parameters, Log-Parameters and Reliability Percentiles for Tensile Test Data given in Table A-23 of the Shigly's book 

Steel Ultimate True Fatigue Strength at Strength at

Grade Strength Stress Exponent N1=10^3 N2=10^6 Shape Scale Mean Stdev

(MPa) (MPa)  b Sf Se β η(σ) μx σx Sf η(σ) Se Sf η(σ) Se

A538A (b) 1515 1655 -0.065 1009.79 644.51 4.909848 806.7353 6.6930 0.23934 1849.08 1477.26 1180.20 807.57 645.18 515.44

A538B (b) 1860 2135 -0.071 1244.59 762.12 4.494931 973.9233 6.8813 0.26143 2409.91 1885.82 1475.71 975.03 762.98 597.06

A538C (b) 2000 2240 -0.070 1315.76 811.29 4.559144 1033.1798 6.9404 0.25775 2524.12 1982.03 1556.36 1034.33 812.19 637.76

AM-350 (c) 1315 2800 -0.140 966.08 367.29 2.279572 595.6811 6.3897 0.51550 3555.35 2192.21 1351.71 597.01 368.11 226.98

AM-350 (c) 1905 2690 -0.102 1238.93 612.42 3.128824 871.0582 6.7697 0.37558 3201.28 2250.73 1582.43 872.47 613.41 431.27

Gainex (c) 530 805 -0.070 472.85 291.56 4.559144 371.2990 5.9170 0.25775 907.11 712.29 559.32 371.71 291.88 229.20

Gainex (c) 510 805 -0.071 469.27 287.36 4.494931 367.2170 5.9060 0.26143 908.66 711.05 556.42 367.63 287.68 225.12

H-11 2585 3170 -0.077 1765.55 1037.24 4.144676 1353.2559 7.2103 0.28352 3615.00 2770.82 2123.77 1354.92 1038.51 796.00

RQC-100 (c) 940 1240 -0.070 728.37 449.11 4.559144 571.9388 6.3490 0.25775 1397.28 1097.20 861.56 572.58 449.61 353.05

RQC-100 (c) 930 1240 -0.070 728.37 449.11 4.559144 571.9388 6.3490 0.25775 1397.28 1097.20 861.56 572.58 449.61 353.05

10B62 1640 1780 -0.067 1069.67 673.37 4.763285 848.6937 6.7437 0.24670 1995.54 1583.29 1256.20 849.60 674.08 534.83

1005-1009 360 580 -0.090 292.64 157.16 3.546001 214.4546 5.3681 0.33139 676.25 495.57 363.17 214.76 157.38 115.33

1005-1009 470 515 -0.059 328.89 218.80 5.409154 268.2541 5.5919 0.21725 569.53 464.54 378.90 268.51 219.01 178.63

1005-1009 415 540 -0.073 310.04 187.25 4.371782 240.9454 5.4846 0.26880 611.62 475.31 369.38 241.23 187.47 145.69

1005-1009 345 640 -0.109 279.49 131.63 2.927891 191.8084 5.2565 0.40135 770.79 528.98 363.03 192.14 131.86 90.49

1015 415 825 -0.110 357.55 167.24 2.901273 244.5348 5.4994 0.40503 995.30 680.69 465.53 244.96 167.53 114.58

1020 440 895 -0.120 359.50 156.93 2.659501 237.5196 5.4703 0.44186 1098.32 725.65 479.44 237.97 157.23 103.88

1040 620 1540 -0.140 531.34 202.01 2.279572 327.6246 5.7919 0.51550 1955.45 1205.72 743.44 328.36 202.46 124.84

1045 725 1225 -0.095 595.03 308.70 3.359369 428.5862 6.0605 0.34980 1440.53 1037.58 747.34 429.24 309.17 222.69

1045 1450 1860 -0.073 1067.92 644.97 4.371782 829.9229 6.7213 0.26880 2106.68 1637.19 1272.32 830.89 645.72 501.81

1045 1345 1585 -0.074 903.14 541.69 4.312704 699.4441 6.5503 0.27248 1798.27 1392.69 1078.59 700.27 542.33 420.01

1045 1585 1795 -0.070 1054.37 650.12 4.559144 827.9276 6.7189 0.25775 2022.68 1588.28 1247.17 828.85 650.84 511.07

1045 1825 2275 -0.080 1238.51 712.69 3.989251 939.5048 6.8454 0.29457 2607.67 1978.12 1500.56 940.70 713.60 541.32

1045 2240 2275 -0.081 1229.13 702.42 3.940001 929.1759 6.8343 0.29825 2612.12 1974.67 1492.77 930.38 703.33 531.69

1144 930 1000 -0.080 544.40 313.27 3.989251 412.9691 6.0234 0.29457 1146.23 869.50 659.59 413.50 313.67 237.94

1144 1035 1585 -0.090 799.72 429.47 3.546001 586.0525 6.3734 0.33139 1848.03 1354.28 992.45 586.89 430.09 315.18

1541F 950 1275 -0.076 715.54 423.28 4.199212 550.3410 6.3105 0.27984 1451.50 1116.40 858.65 551.01 423.80 325.95

1541F 890 1275 -0.071 743.25 455.13 4.494931 581.6169 6.3658 0.26143 1439.17 1126.19 881.28 582.27 455.65 356.56

4130 895 1275 -0.083 678.46 382.41 3.845061 509.3598 6.2332 0.30562 1468.94 1102.82 827.95 510.03 382.91 287.47

4130 1425 1695 -0.081 915.77 523.34 3.940001 692.2871 6.5400 0.29825 1946.18 1471.23 1112.20 693.18 524.02 396.14

4140 1075 1825 -0.080 993.53 571.72 3.989251 753.6687 6.6250 0.29457 2091.87 1586.84 1203.74 754.63 572.44 434.24

4142 1060 1450 -0.100 678.06 339.83 3.191401 480.0262 6.1738 0.36821 1719.72 1217.47 861.90 480.79 340.37 240.97

4142 1250 1250 -0.080 680.50 391.59 3.989251 516.2114 6.2465 0.29457 1432.79 1086.88 824.48 516.87 392.09 297.43

4142 1415 1825 -0.080 993.53 571.72 3.989251 753.6687 6.6250 0.29457 2091.87 1586.84 1203.74 754.63 572.44 434.24

4142 1550 1895 -0.090 956.13 513.47 3.546001 700.6748 6.5520 0.33139 2209.48 1619.16 1186.56 701.68 514.21 376.82

4142 1760 2000 -0.080 1088.80 626.54 3.989251 825.9382 6.7165 0.29457 2292.46 1739.01 1319.17 826.99 627.34 475.88

4142 2035 2070 -0.082 1109.91 629.92 3.891952 836.1532 6.7288 0.30194 2380.80 1793.59 1351.21 837.25 630.74 475.17

4142 1930 2105 -0.090 1062.09 570.37 3.546001 778.3221 6.6571 0.33139 2454.33 1798.59 1318.05 779.44 571.19 418.58

4142 1930 2170 -0.081 1172.40 670.00 3.940001 886.2909 6.7870 0.29825 2491.56 1883.53 1423.88 887.43 670.87 507.15

4142 2240 1655 -0.089 841.41 454.99 3.585844 618.7373 6.4277 0.32771 1926.36 1416.57 1041.69 619.61 455.64 335.06

4340 825 1200 -0.095 582.89 302.40 3.359369 419.8396 6.0399 0.34980 1411.13 1016.40 732.09 420.48 302.86 218.14

4340 1470 2000 -0.091 1001.47 534.12 3.507034 731.3685 6.5949 0.33507 2335.88 1705.89 1245.81 732.43 534.89 390.63

4340 1240 1655 -0.076 928.79 549.44 4.199212 714.3642 6.5714 0.27984 1884.11 1449.12 1114.57 715.23 550.10 423.10

5160 1670 1930 -0.071 1125.08 688.94 4.494931 880.4084 6.7804 0.26143 2178.52 1704.75 1334.01 881.40 689.72 539.73

52100 2015 2585 -0.090 1304.27 700.43 3.546001 955.8018 6.8626 0.33139 3013.98 2208.72 1618.60 957.17 701.44 514.03

9262 925 1040 -0.071 606.26 371.24 4.494931 474.4169 6.1621 0.26143 1173.92 918.62 718.85 474.95 371.66 290.84

9262 1000 1220 -0.073 700.46 423.04 4.371782 544.3580 6.2996 0.26880 1381.80 1073.85 834.54 544.99 423.54 329.15

9262 565 1855 -0.057 1202.78 811.31 5.598949 987.8368 6.8955 0.20988 2044.44 1679.09 1379.03 988.73 812.04 666.93

9050C (d) 565 1170 -0.120 469.96 205.15 2.659501 310.5005 5.7382 0.44186 1435.80 948.62 626.75 311.09 205.54 135.80

9050C (d) 565 970 -0.110 420.40 196.63 2.901273 287.5136 5.6613 0.40503 1170.23 800.33 547.36 288.02 196.98 134.72

9050X (d) 440 625 -0.075 353.43 210.52 4.255201 272.7739 5.6086 0.27616 710.31 548.21 423.10 273.10 210.78 162.68

9050X (d) 530 1005 -0.100 469.96 235.54 3.191401 332.7078 5.8073 0.36821 1191.94 843.83 597.39 333.24 235.91 167.01

9050X (d) 695 1055 -0.08 574.34 330.50 3.989251 435.6824 6.0769 0.29457 1209.27 917.33 695.86 436.24 330.92 251.03

Weibull Parameters Log-Parameters

R(0.95), Yui=-2.970195249 R(0.05), YLi=1.0971887

Reliability Percentiles for the S-N Curve
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7. Conclusions 

 

1. Although the relation µ𝑥 = ln(𝜂(𝜎)) holds, the 

confidence interval CL limits of a S-N curve 

defined in Eq. (17), should not be used to perform 

a reliability analysis. They sub-estimate the 

reliability index.  

 

2. From Eqs. (21 and 22) the upper and lower 𝑆𝑓, 

𝜂(𝜎), and 𝑆𝑒 values to determine any desired 

reliability percentile for a S-N curve are given by 

using only the corresponding 𝑌𝐿,𝑢𝑖  and 𝛽 values.  

3. Observe that although here the Weibull 

strength parameters were both determined for 

𝑁1 = 103 and 𝑁2 = 106, any other desired 

values between these two values can be used.  

 

4. As shown in Table 3, the lower reliability 

percentiles of the S-N curve are the minimum 

strength values given in the column 𝜂(𝜎𝑖) of Table 

 

5. Due to the column 𝜂(𝜎𝑖) of Table 3 represents 

the minimum strength values that the designed 

element must have to present the desired 

reliability, then the reliability percentiles of the 

S-N curve can be used as the accelerated levels 

in and ALT test to demonstrate the product 

presents the intended reliability [17].     

 

6. Although the Weibull analysis performed in 

Table 3 is for constant stress values, and that 

given by the stress/strength methodology is for 

variable stress behavior, for high reliability  

 = 0.9678. indexes, the estimated reliability 

indexes are both similar [18] [𝑅(𝜎) ≅
𝑅(𝑡, 𝜂𝑠, 𝜂(𝜎𝑖))]. Formal formulation why this fact 

occurs is an open issue on which more research 

must be undertaken.   
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