[15] J. Homola, S. S. Yee, and G. Gauglitz, "Surface
plasmon resonance sensors: review," Sensors Actuators
B Chem., vol. 54, no. 1, pp. 3-15, 1999.
https://doi.org/10.1016/S0925-4005(98)00321-9.
[16] A. R. Mendelsohn and R. Brent, "Protein
Interaction Methods-Toward an Endgame," Science
(80)., vol. 284, no. 5422, pp. 1948 LP - 1950, Jun. 1999.
https://doi.org/10.1126/science.284.5422.1948.
[17] R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C.
Davies, C. J. Roberts, and S. J. B. Tendler, "Surface
plasmon resonance analysis of dynamic biological
interactions with biomaterials," Biomaterials, vol. 21,
no. 18, pp. 1823-1835, 2000.
https://doi.org/10.1016/S0142-9612(00)00077-6.
[18] J. Pendry, "Playing Tricks with Light," Science
(80-. )., vol. 285, no. 5434, pp. 1687 LP - 1688, Sep.
1999. https://doi.org/10.1126/science.285.5434.1687.
[19] E. Prodan, C. Radloff, N. J. Halas, and P.
Nordlander, "A Hybridization Model for the Plasmon
Response of Complex Nanostructures," Science (80-. ).,
vol. 302, no. 5644, pp. 419 LP - 422, Oct. 2003.
https://doi.org/10.1126/science.1089171.
[20] W. L. Barnes, A. Dereux, and T. W. Ebbesen,
"Surface plasmon subwavelength optics," Nature, vol.
424, no. 6950, pp. 824-830, 2003.
https://doi.org/10.1038/nature01937.
[21] W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot
coupler with a surface plasmon polariton condenser for
optical far/near-field conversion," Appl. Phys. Lett., vol.
86, no. 18, p. 181108, Apr. 2005.
https://doi.org/10.1063/1.1920419.
[22] J. Homola, "Present and future of surface plasmon
resonance biosensors," Anal. Bioanal. Chem., vol. 377,
no. 3, pp. 528-539, 2003.
https://doi.org/10.1007/s00216-003-2101-0.
[23] J. Zhang, L. Zhang, and W. Xu, "Surface plasmon
polaritons: physics and applications," J. Phys. D. Appl.
Phys., vol. 45, no. 11, p. 113001, 2012.
https://doi.org/10.1088/0022-3727/45/11/113001.
[24] K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S.
Meyer, S. Iotti, A. Rossinelli, and D. J. Norris.
Plasmonic films can easily be better: Rules and recipes,
ACS Photonics 2, 326-333, 2015.
https://doi.org/10.1021/ph5004237.
[25] S. Babar and J. H. Weaver. Optical constants of Cu,
Ag, and Au revisited, Appl. Opt. 54, 477-481, 2015.
https://doi.org/10.1364/AO.54.000477.
[26] F. Lemarchand, private communications (2013).
Index determination is performed using method
explained in: L. Gao, F. Lemarchand, and M. Lequime.
Comparison of different dispersion models for single
layer optical thin film index determination, Thin Solid
Films 520, 501-509 (2011).
https://doi.org/10.1016/j.tsf.2011.07.028.
[27] R. L. Olmon, B. Slovick, T. W. Johnson, D.
Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke.
Optical dielectric function of gold, Phys Rev. B 86,
235147, 2012.
https://doi.org/10.1103/PhysRevB.86.235147.
[28] W. S. M. Werner, K. Glantschnig, C. Ambrosch-
Draxl. Optical constants and inelastic electron-
scattering data for 17 elemental metals, J. Phys Chem
Ref. Data38, 1013-1092, 2009.
https://doi.org/10.1063/1.3243762.
Este texto está protegido por una licencia Creative Commons 4.0
Usted es libre para Compartir —copiar y redistribuir el material en cualquier medio o formato — y Adaptar el documento —
remezclar, transformar y crear a partir del material— para cualquier propósito, incluso para fines comerciales, siempre que cumpla la condición
de:
Atribución: Usted debe dar crédito a la obra original de manera adecuada, proporcionar un enlace a la licencia, e indicar si se han
realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que tiene el apoyo del licenciante o lo recibe
por el uso que hace de la obra.
Resumen de licencia - Texto completo de la licencia