gas de trabajo y al material de transporte de
energía en la celda fotoacústica.
Referencias
[1] A. Salazar, “On thermal diffusivity”. Eur. J. Phys., vol.
24, pp. 351–358, May. 2003.
https://iopscience.iop.org/article/10.1088/0143-
0807/24/4/353/pdf
[2] L.F. Perondi, L.C.M. Miranda, “Minimal-volume
photoacoustic cell measurement of thermal diffusivity:
effect of the thermoelastic sample bending”. J. Appl. Phys.,
Vol. 62. no. 7, pp. 2955e9, 1987.
https://doi.org/10.1063/1.339380
[3] N.F. Leite, C. Cella, H. Vargas, L.C.M. Miranda,
“Photoacoustic measurement of thermal diffusivity of
polymer foils”. J. Appl. Phys. Vol. 61, no. 8, pp. 3025e7,
1987. https://doi.org/10.1063/1.337853
[4] H.K. Park, C.P. Grigoropoulos, A.C. Tam, “Optical
measurements of thermal diffusivity of a material”. Int J
Thermophys. Vol. 16, no. 4, pp. 973e95, 1995.
https://doi.org/10.1007/BF02093477
[5] A. Calderón, J. J. Alvarado-Gil, Yu Gurevich, A. Cruz-
Orea, I. Delgadillo, H. Vargas, L. C.M. Miranda,
“Photothermal characterization of electrochemical etching
processed ntype porous silicon”. Phys. Rev. Lett. Vol. 79,
no. 25, pp. 5022, 1997.
https://doi.org/10.1103/PhysRevLett.79.5022
[6] A. Calderón, R. A. Muñoz Hernández, and S. A. Tomás,
“Method for measurement of the thermal diffusivity in
solids: application to metals, semiconductors, and thin
materials”. J. Appl. Phys., Vol. 84, no. 11, pp. 6327e9,
1998. https://doi.org/10.1063/1.368957
[7] A. M. Mansanares and H. Vargas. Photoacoustic
characterization of a two-layer system. J. Appl. Phys., Vol.
70, no. 11, pp. 7046e50, 1991.
https://doi.org/10.1063/1.349782
[8] J. J. Alvarado-Gil, O. Zelaya-Angel, H. Vargas, and J.
L. Lucio M. “Photoacoustic characterization of the thermal
properties of a semiconductor-glass two-layer system”.
Phys. Rev. B., Vol. 50, no. 19, pp. 14627, 1994.
https://doi.org/10.1103/PhysRevB.50.14627
[9] G. C. Astrath Nelson, B. G. Astrath Francine, J. Shen,
C. Lei, J. Zhou, S. S. Liu Zhong, et al. “An open-
photoacoustic-cell method for thermal characterization of
a two-layer system”. J. Appl. Phys. Vol. 107, no. 4, pp.
043514, 2010. https://doi.org/10.1063/1.3310319
[10] B. Abad, M. Rull-Bravo, Hodson SL, Xu X, Martin-
Gonzalez M. “Thermoelectric properties of
electrodeposited tellurium films and the sodium
lignosulfonate effect”. Electrochim Acta., Vol.169, pp. 37–
45, 2015. https://doi.org/10.1016/j.electacta.2015.04.063
[11] A. Rosencwaig and A. Gersho, “Theory of the
photoacoustic effect with solids,” J. Appl. Phys, vol. 47,
no. 1, pp. 64–69, Jan. 1976.
https://doi.org/10.1121/1.2002181
[12] H. S. Bennett and R. A. Forman, “Frequency
dependence of photoacoustic spectroscopy: Surface and
bulkabsorption coefficients,” J. Appl. Phys, vol. 48, no. 4,
pp. 1432–1436, Apr. 1977.
https://doi.org/10.1063/1.323883
[13] D. Cahen, “Photoacoustic cell for reflection and
transmition measurements,” Rev. Sci. Instrum., vol. 52, no.
9, pp. 1306–1310, Sep. 1981.
https://doi.org/10.1063/1.1136788
[14] F. G. C. Bijnen, J. Reuss, and F. J. M. Harren,
“Geometrical optimization of a longitudinal resonant
photoacoustic cell for sensitive and fast trace gas
detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–
2923, Aug. 1996. https://doi.org/10.1063/1.1147072
[15] D. I. Kovsh, D. J. Hagan, and E. W. V. Stryland,
“Numerical modeling of thermal refraction in liquids in the
transient regime,” Opt. Express, vol. 4, no. 8, p. 315, Apr.
1999. https://doi.org/10.1364/OE.4.000315
[16] M. Nägele and M. W. Sigrist, “Mobile laser
spectrometer with novel resonant multipass photoacoustic
cell for trace-gas sensing” Appl. Phys. B, vol. 70, no. 6, pp.
895–901, Jun. 2000. https://doi.org/10.1007/PL00021151
[17] J. P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas
sensing based on photoacoustic spectroscopy using tunable
laser diodes,” Spectrochim. Acta. A. Mol. Biomol.
Spectrosc., vol. 60, no. 14, pp. 3449–3456, Dec. 2004.
https://doi.org/10.1016/j.saa.2003.11.046